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Introduction

In this essay, we present a theorem of Tate which relates p-adic representa-
tions with a “Hodge-Tate decomposition” to “locally algebraic” ones. The result
appears in Serre’s “Abelian `-adic Representations” [6], as well as in the lecture
notes of Coates [3] which, together with Serre’s “Local Fields” [7], serve as our
main references.

Several tools from ramification theory are needed, and we present these in
Chapter I. Here we define the ramification groups and establish their basic proper-
ties (the theorems of Herbrand and Hasse-Arf). They notably give rise to formulas
for the exponent of the different Galois extensions, which in turn are crucial for the
definition of so-called “deeply ramified” extensions; for the sake of completeness, we
give five equivalent definitions of these (Section 3.1). Then, ramified Zp-extensions,
which are special cases of deeply ramified ones, are discussed (Section 3.2), and
used in order to compute cohomology groups tracking the action of certain Galois
groups on the completion C of the algebraic closure of Qp (Section 3.2). A brief
account on the cohomology of groups, and in particular of finite cyclic groups, is
also given (Section 2).

In Chapter II, we prove Tate’s theorem. An essential part of the proof is based
on a certain character arising from the Lubin-Tate theory of formal groups (Sec-
tion 1). As a by-product, we obtain almost for free a proof of the theorem of Hasse-
Arf discussed in Chapter I. We then introduce p-adic representations, the analogues
of the classical complex ones, and define a class of those with a “Hodge-Tate de-
composition” (Section 2). Finally, we define “locally algebraic” representations and
prove that they coincide with the Hodge-Tate ones (Section 3.1).

Notations and conventions. Throughout, K denotes a field with a normal-
ized discrete valuation vK for which it is complete. We denote by OK the ring
of integers of K, mK the maximal ideal in OK , and kK = OK/mK the residue
field of K. Unless otherwise stated, for a finite extension L of K, we will always
assume that the extension kL/kK of residue fields is separable. In particular, OL is
a monogenous extension of OK .

Acknowledgement. I would like to thank Professor John Coates for propos-
ing this essay topic, which has been a pleasure to work on from the beginning to
the end.
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CHAPTER 1

Higher ramification theory

The main objective of this chapter is to establish identities for the cohomology
groups associated to certain Galois extensions, and which will reveal crucial for the
proof of Tate’s theorem. We start by giving the elementary properties of ramifi-
cation groups, and consequently obtain formulas for the different of finite Galois
extension L/K. Following Coates and Greenberg [4], we then define deeply ram-
ified extensions, and end with examples of such extensions as well as important
cohomological interpretations.

1. Ramification groups

1.1. Ramification groups in the upper numbering. Let L/K be a finite
Galois extension, and let G be its Galois group. The group G acts on OL. For
i ≥ −1, we define the i’th ramification group of G (in the lower numbering) to be
the subgroup of G operating trivially on the quotient OL/m

i+1
L , that is, the kernel

of the action,

Gi = ker(G→ Aut(OL/m
i+1
L )).

The group G−1 is G itself, and G0 is the inertia subgroup I of L/K. The Gi’s form
a decreasing filtration of normal subgroups G ⊃ I ⊃ G1 ⊃ G2 ⊃ . . . ⊃ {1}, which
eventually becomes stationary.

Fix a generator x of the OK-algebra OL, and define a function iG on G by

iG(s) = vL(s(x)− x).

Then we have

Gi = {s ∈ G | iG(s) ≥ i+ 1}.

Indeed, the image xi of x in OL/m
i+1
L generates OL/m

i+1
L as an OK-algebra, and

hence s operates trivially on OL/m
i+1
L if and only if s(xi) = xi.

Let K ′ be an extension of K contained in L, and let H = Gal(L/K ′) be the
corresponding Galois group. The ramification groups associated to the extension
L/K ′ are determined by those associated with the extension L/K, as the following
obvious Proposition shows:

Proposition 1.1. We have Hi = Gi ∩H.

In particular, we may take K ′ to be the maximal unramified extension Knr of
K contained in L (in which case L/Knr is totally ramified), so that H is the inertia
subgroup G0 of G. Then, by virtue of the Proposition, the ramification groups Gi
of G coincide with the ramification groups Hi of H for all i ≥ 0. Hence, when
investigating the ramification groups of index ≥ 0, it is sufficient to consider the
totally ramified case only.

7



8 1. HIGHER RAMIFICATION THEORY

Suppose now, and for the rest of this section, that H is a normal subgroup of
G, so that G/H can be identified with the Galois group of K ′/K. The following
result shows that the ramification groups of G/H are determined by those of G:

Proposition 1.2. Let σ ∈ G/H. We have

iG/H(σ) =
1

eL/K′

∑

s→σ

iG(s),

the sum being taken over the elements s of G whose image in G/H is σ.

Proof. The equality holds for σ = 1, both sides being equal to +∞. Hence,
let us assume σ 6= 1. If x, resp. y, denotes a generator of the OK-algebra OL, resp.
OK′ , we have iG(s) = vL(s(x) − x) and iG/H(σ) = vL(σ(y) − y)/eL/K′, the latter
equality following from the formula vL(x) = eL/K′ · vK′(x). �

1.2. Herbrand’s Theorem. For a real number u ≥ −1, set Gu = Gi, where
i is the smallest integer ≥ u. For u ≥ −1, define

ϕL/K(u) =

∫ u

0

dt

(G0 : Gt)
,

with the convention that (G0 : Gt) = 1 for −1 < t ≤ 0 so that ϕL/K is the identity
on [−1, 0]. [When there is no ambuiguity, we omit the reference to L/K and write
ϕ instead.] Clearly, if m ≤ u ≤ m + 1 for some positive integer m, we have the
formula

(1) ϕ(u) =
1

g0
(g1 + . . .+ gm + (u−m)gm+1), where gi = Card(Gi).

The following is immediate, and provides an alternative characterization of ϕ:

Proposition 1.3. The function ϕ is the unique continuous, piecewise linear map
from [−1,∞[ to itself, satisfying ϕ(0) = 0 and ϕ′(u) = gu/g0 if u /∈ Z.

In particular, since it is striclty increasing, it is a homeomorphism; denote by
ψ = ψL/K its inverse. The ramification groups in the upper numbering are defined
by

Gv = Gψ(v) or equivalently Gϕ(u) = Gu.

By the remarks above, we have G−1 = G, G0 = G0, and Gv = {1} for v sufficiently
large. Furthermore, the upper numbering is adequate for quotients, by virtue of
the following:

Theorem 1.4 (Herbrand). For all v ≥ −1, we have (G/H)v = GvH/H.

Before proving the Theorem, we will establish some facts about the functions
ϕ and ψ.

Lemma 1.5. ϕL/K(u) = 1
g0

∑
s∈G Inf(iG(s), u + 1)− 1.

Proof. Suppose m < u ≤ m + 1 for some positive integer m. By comparing
with formula (1), it clearly suffices to show that

∑
s∈G Inf(iG(s), u + 1) = g0 +

. . . + gm + (u − m)gm+1. This follows by decomposing the sum into two sums
running over s ∈ Gu, respectively s ∈ G\Gu, as well as from the equivalence
s ∈ Gi\Gi+1 ⇐⇒ iG(s) = i+ 1. �
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Lemma 1.6. For σ ∈ G/H, let j(σ) be the maximum of the integers iG(s), where
s runs through the elements in G whose image in G/H is σ. Then

iG/H(σ)− 1 = ϕL/K′(j(σ) − 1).

Proof. Let s be an element of G whose image in G/H is σ, and for which
iG(s) = j(σ), and set m = iG(s). If t ∈ Hm−1, iG(t) ≥ m, so that iG(st) ≥ m; by
maximality, iG(st) = m. If t /∈ Hm−1, iG(t) < m so that iG(st) = iG(t). Hence,
iG(st) = Inf(iG(t),m). Noting that the elements of G whose image in G/H is σ
are of the form st, t ∈ H , it follows by Proposition 1.2 that

iG/H(σ) =
1

eL/K′

∑

t∈H

Inf(iG(t),m).

Noticing that iG(t) = iH(t) and eL/K′ = Card(H0), and applying the formula of
Lemma 1.5 for ϕL/K′ , we obtain the desired result. �

Lemma 1.7. GuH/H = (G/H)ϕL/K′(u).

Proof. We keep the notations of the previous lemma. We have the equiva-
lences:

σ ∈ GuH/H ⇐⇒ j(σ) ≥ u+ 1 ⇐⇒ ϕL/K′(j(σ) − 1) ≥ ϕL/K′(u)

⇐⇒ iG/H(σ) − 1 ≥ ϕL/K′(u) ⇐⇒ σ(G/H)ϕL/K′(u).

�

Lemma 1.8. We have the transitivity relations

ϕL/K = ϕK′/K ◦ ϕL/K′ and ψL/K = ψL/K′ ◦ ψK′/K .

Proof. Fix u /∈ Z, u ≥ −1, and set v = ϕL/K′(u). By the Chain Rule, the
derivative of the composition ϕK′/K ◦ ϕL/K′ is

ϕ′
K′/K(v) · ϕ′

L/K′(u) =
Card((G/H)v)

eK′/K
·
Card(Hu)

eL/K′

=
Card(Gu)

eL/K
,

the second equality following from Lemma 1.7 and the transitivity formula for the
ramification index. The latter term is precisely the derivative of ϕL/K(u), and the
desired equality for ϕ follows. The equality for ψ is obtained from that for ϕ. �

Proof of Theorem 1.4. By definition, (G/H)v = (G/H)ψK′/K(v). By Lem-

ma 1.7, this is equal to GwH/H , where w = ψL/K′(ψK′/K(v)). By the transitivity
formula for ψ, we have w = ψL/K(v), and hence GwH/H = GψL/K(v)H/H =

GvH/H . This completes the proof. �

1.3. The theorem of Hasse-Arf. If L/K is an infinite Galois extension,
we can define, by virtue of Theorem 1.4, the ramification groups of G by setting
GvL/K = lim

←−
GvL′/K , where L′ runs through the finite Galois extensions of K con-

tained in L. Again, we obtain an decreasing filtration, satisfying Gv =
⋂
w<vG

w.

We say that v is a gap in the filtration if Gv 6= Gv+ε for all ε > 0. As the following
example shows, gaps in {Gv} may occur at non-integral values.
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Example. Let H be the quaternionic group, and let C = {±1} be its centre. In [8],
Serre shows that there exists a totally ramified extension L/K with Galois group
G, and such that G4 = {1}. We will show that a gap occurs in the filtration {Gv}
at the point 3/2. A small computation shows that ϕL/K is the identity on [−1, 1],
so that Gv = Gv = G for −1 ≤ v ≤ 1. Furthermore, for 1 < u ≤ 3, ϕL/K(u) takes
its values in the interval ]1, 3/2]. Hence, Gv = G2 = G3 = C for 1 < v ≤ 3/2.
Finally, Gv = G4 = {1} for v > 3/2.

In the case of abelian extensions, however, the gaps are more well-behaved, as
the following theorem shows.

Theorem 1.9 (Hasse-Arf). Suppose G is abelian. Then the gaps in the filtration
{Gv} only occur at integral values of v.

The proof is given Chapter II, §1, using Lubin-Tate formal groups. However, a
direct (but longer) proof can also be obtained, see Serre [7], Chap. V, §7.

1.4. The group of units. Let U = O∗
K be the group of units of K. We define

a filtration of U by setting

U0 = U

Un = 1 + m
n
K , for n ≥ 1.

Notice that this forms a basis of neighbourhoods of 1.

Proposition 1.10. For all n ≥ 1, we have isomorphisms

U/Un ' (OK/m
n
K)∗ and Un/Un+1 ' mn

K/m
n+1
K ' k+

K .

Proof. The map U → (OK/m
n
K)∗, obtained by sending u ∈ U to u (mod

mn
K), is surjective, with kernel Un. This establishes the first isomorphism. The

map Un → mn
K , obtained by sending x + 1 ∈ Un to x ∈ mn

K , clearly induces an

isomorphism Un/Un+1 ' mn
K/m

n+1
K . Furthermore, knK/k

n+1
K is a one-dimensional

vector space over kK , and hence is isomorphic to k+
K , the additive group of kK .

This establishes the remaining isomorphisms. �

Proposition 1.11. Let eK = eK/Qp
be the absolute ramification index of K.

(i) If n ≤ eK/(p− 1), then Upn ⊂ Unp.
(ii) If n > eK/(p − 1), then Un ' Un+eK , the isomorphism being given by

x 7→ xp.

Proof. (i) Obvious for n = 0. So suppose n > 0; let π be a uniformizer of
OK , and let x = 1 + aπn, z ∈ OK , be an element of Un. We need to show that
xp = 1 + paπn + . . .+ (aπn)p belongs to Upn = 1 + m

p
K , or equivalently, that all the

terms in a belong to m
p
K . This is obviously true for the last term (aπn)p. On the

other hand, each middle term
(
p
i

)
(aπn)i, 0 < i < p, has order ≥ n + eF . Indeed,

the binomial coefficient
(
p
i

)
is divisible by p, so it is of the form pt for some t; thus,

vK(pt) ≥ vK(p) = eKvQp(p) = eK . But by assuption, n + eK ≥ np, and we are
done.

(ii) We use the same notation as in (i). Let y be an element of Un+eK , say
y = 1 + bπn+eK . We must show that there is a unique x ∈ Un, say x = 1 + zπn,
such that xp = y, i.e. that the equation

(2) (1 + zπn)p = 1 + bπn+eK
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has a unique solution in z ∈ OK . By the same argument as in (i), each term
in z, in the expansion of x, belongs to m

n+eK

K (for the last term, the assumption
np > n+ eK is used). Hence, if we subtract 1 from both sides of equation (2) and
divide by πn+eK , the equation becomes f(z) = b for some polynomial f ∈ OK [z]
with coefficients all divisible by π. Moreover, the term of degree 1 is zpπn/πn+eK =
pπ−eKz; let a = pπ−eK be its coefficient. Taking the valuation vK of a, we obtain
vK(a) = vK(p) − eK = eKv(p) − eK = 0, where v is the valuation on Qp. Hence,
a ∈ O∗

K , so that (∗) becomes

(3) az + F (z) = b, a ∈ O∗
K , F ∈ OK [z].

Reduction modulo mK yields the equation az = b, and since b ∈ O∗
K , we have b 6= 0

and hence this equation has a unique solution in z. By applying Hensel’s Lemma,
we deduce that (3), and consequently (2), has a unique solution in z. �

1.5. The different. Let x denote a generator of OL over OK , and let f(X) =∏
s∈G(X − s(x)) be its minimal polynomial. The discriminant DL/K is generated

by f ′(x) (Serre [7], Ch. III, Cor. 2 to Prop. 11).

Theorem 1.12. Suppose L/K is a finite Galois extension. Then

vL(DL/K) =
∞∑

i=0

(gi − 1) =

∫ ∞

−1

(gw − 1)dw, where gi = Card(Gi).

Notice that gi − 1 = 0 for i sufficiently large; hence the sum is well-defined.

Proof. By the remarks above, we have f ′(x) =
∏
s6=1(x−s(x)) and vL(DL/K) =

vL(f ′(x)) =
∑
s6=1 iG(s). We have iG(s) = i if s ∈ Gi−1\Gi; hence, if ri = gi − 1,

we get
∑

s6=1 iG(s) =
∑∞
i=0 i(ri−1− ri) = (r0− r1)+2(r1− r2)+ . . . =

∑∞
i=0 ri, and

the first equality is established. The second equality is immediate. �

We prove the following generalization to the case where the extension L/K
is not required to be Galois. For u ∈ [1,∞[, let Kv denote the fixed field of
Gal(L/K)v.

Theorem 1.13. Suppose L/K is a finite extension. Then

(4) vL(DL/K) = eL/K ·

∫ ∞

−1

(
1−

1

[L : L ∩Kv]

)
dv.

Proof. We reduce the theorem to the classical case of Galois extensions. To
that purpose, let M be any finite Galois extension of K containing L. Let H =
Gal(M/L) be the corresponding Galois group, and let hu be the cardinality of the
u’th ramification group Hu of H . By multiplicativity of the different, DM/K =
DM/L · DL/K , and thus vM (DL/K) = vM (DM/K) − vM (DM/L). This identity,
combined with that of Theorem 1.12, yields

(5) vL(DL/K) =
1

eM/L
vM (DL/K) =

1

eM/L
·

∫ ∞

−1

(gu − hu)du.

On the other hand, L∩F v is the fixed field of the smallest subgroup of G containing
H and Gv, i.e. GvH = HGv (since H is normal in G). Hence Gal(L/L ∩Kv) =
HGv/H , and by the second isomorphism theorem, [L : L ∩Kv] = Card(Gv/(Gv ∩
H)). Passing to the lower numbering, we have [L : L∩Kv] = Card(Gu/(Gu ∩H)),
where u = ϕM/K(v). But by Proposition 1.1, Gu ∩H = Hu, so that [L : L∩Kv] =
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Card(Gu)/Card(Hu). By Proposition 1.3, ϕ′
M/K(u) = gu/g0, so by making the

variable change u = ϕM/K(v), the right hand side of (4) is equal to

eL/K ·

∫ ∞

−1

(
1−

hu
gu

)
gu
g0
du =

eL/K

g0
·

∫ ∞

−1

(gu − hu)du

Recalling that G0 is the inertia subgroup of G which has cardinality eM/K , and
that em/K = eM/L · eL/K , we see that this formula coincides with (5), whence the
result. �

If L/K is a finite extension, the conductor of L over K is the smallest integer
v for which L ⊂ Kv−1; we denote it fL/K .

Corollary 1.14. Suppose L/K is a finite extension. Then

eL/K · fL/K/2 ≤ vL(DL/K) ≤ eL/K · fL/K .

Proof. By definition, L∩Kv = L when v > fL/K−1. Thus, by Theorem 1.13,

vL(DL/K) = eL/K ·

∫ fL/K−1

−1

h(v)dv,

where h(v) = 1 − 1/[L : L ∩Kv]. Clearly, 1/2 ≤ h(v) ≤ 1 for −1 ≤ v ≤ fL/K − 1,
and hence

fL/K/2 ≤

∫ fL/K−1

−1

h(v)dv ≤ fL/K .

The result follows immediately. �

Lemma 1.15. Let M/L be a finite extension. Then TrM/L(OM ) = mN
L , where N

is the integral part of vL(DM/L)/eM/L.

Proof. Let π be a uniformizer for L. The inequality N · eM/L ≤ vL(DM/L)

implies that π−NOM ⊂ D
−1
M/L, and, taking the trace on both sides, we get that

TrM/L(OM ) ⊂ πNOL(= mN
L ). On the other hand, the inequality (N + 1)eM/L >

vL(DM/L) implies that TrM/L(OM ) is not contained in m
N+1
L . Since TrM/L(OM )

is an ideal of OL, it follows that the inclusion TrM/L(OM ) ⊂ mN
L is an equality. �

2. Cohomology of groups

In this section, we briefly recall the construction of the cohomology groups of
G-modules, and establish some standard results: the inflation-retriction sequence
and a “non-commutative” version of Hilbert’s Theorem 90. Special emphasis is
then put on the case where the group G is finite and cyclic, and it turns out that
the cohomology groups are periodic of period 2. The definition of the Herbrand
quotient arise from this observation.

2.1. Definitions and elementary properties. Let G be a group, and let
A be a G-module (i.e. an abelian group on which the group algebra Z[G] acts).
If B is another G-module, a G-homomorphism f : A → B is a homomorphism
of Z[G]-modules. If AG, resp. BG, denotes the largest subgroup of A, resp. B,
of elements fixed by G, then f maps AG into BG; thus we may view AG as a
functor from the category of G-modules to the category of abelian groups. If we
view Z as a G-module on which G acts trivially, we can identify AG with the group
HomG(Z, A) of G-homomorphisms Z → A. By definition, the cohomology groups
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of G, with coefficients in A, denoted H∗(G,A), are the right derived functors of
AG ' HomG(Z, A), that is,

Hq(G,A) = Extq(Z, A) (q ≥ 0).

For their explicit computation, we choose a free resolution of Z

. . .→ L1 → L0 → Z→ 0,

where Ln is the free Z-module with basis (x0, . . . , xn), xi ∈ G, on which G acts by
translation. The differential d : Ln → Ln−1 is given by the formula

d(x0, . . . , xn) =

n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn),

the notation x̂i meaning that the letter xi is omitted, and the final map L0 → Z is
simply chosen to send every (x0) ∈ L0 to 1 ∈ Z. As usual, denote by Cn(G,A) =
HomG(Ln, A) the set of cochains on G. Its elements are thus functions f : Gn+1 →
A satisfying f(s · x0, . . . , s · xn) = s · f(x0, . . . , xn), s ∈ G. The coboundary map
d : Cn(G,A)→ Cn+1(G,A) is given by

df(x1, . . . , xn+1) = x1 · f(x2, . . . , xgn+1)

+
n∑

i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn),

and we recover the definition

Hq(G,A) = ker d/im d.

Notice that a 1-cocycle is a map f : G→ A satisfying f(xx′) = xf(x′) + f(x), and
that such a map is a 1-coboundary if there exists a ∈ A such that f(x) = x · a− a
for all x ∈ G. Two cocycles f, g on G are said to be cohomologous if there exists
an element a ∈ A such that f(x) = a−1g(x)x(a) for all x ∈ G.

Given an exact sequence of G-modules

0→ A→ B → C → 0,

we obtain, in the usual manner (by choosing the above resolution of cochains and
applying the Snake Lemma), a long exact sequence in cohomology,

(∗) . . .→ Hq(G,A)→ Hq(G,B)→ Hq(G,C)→ Hq+1(G,A)→ . . . .

Hence, the functor Hq(G, ), besides being a derived functor (i.e. H0(G,A) = AG,
and Hq(G,A) = 0 if q ≥ 1 and if A is injective), is in fact a cohomological functor.

The following proposition shows that the cohomology groups behave well under
passage to inductive limits. This is of particular interest when we deal with infinite
Galois extensions, such as deeply ramified extensions, since the Galois groups in
question are then the projective limit of the Galois groups corresponding to the
finite Galois subextensions.

Proposition 2.1. Let (Gi) be a projective system of groups, and let (Ai) be an
inductive system of Gi-modules. Let G = lim

←−
Gi and A = lim

−→
Ai. Then

Hq(G,A) = lim
−→

Hq(Gi, Ai), for all q ≥ 0.
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Proof. It is clear that lim
−→

C∗(Gi, Ai) ' C∗(G,A), and the result follows by
taking homology. �

Let H be a subgroup of G. Then we have a natural restriction map

Res : H1(G,A)→ H1(H,A).

If furthermore H is normal, we have the inflation map,

Inf : H1(G/H,AH)→ H1(G,A)

defined by sending the 1-cocyle f : G/H → AH to the 1-cocycle Inf(f) defined by
Inf(f)(x0) = f(x0), where x0 denotes the image of x0 in G/H .

Proposition 2.2. The following sequence is exact:

0→ H1(G/H,AH)
Inf
−−→ H1(G,A)

Res
−−→ H1(H,A).

Proof. One immediately verifies that Res ◦ Inf = 0. Hence it suffices to show
exactness at H1(G/H,AH) and H1(G,A).

If f : G/H → AH is a cocycle on G/H whose inflation is a coboundary on G,
then by definition there exists a ∈ A such that f(s) = s · a − a for all s ∈ G. In
particular, if s ∈ H , we get s · a− a = f(s) = f(0) = 0 so that a ∈ AH . Hence f is
a coboundary on G/H , which proves exactness at H1(G/H,AH).

Similarly, if f ∈ ker(Res), then there exists a ∈ A such that f(t) = t · a− a for
all t ∈ H . The cocycle F (s) = f(s)− (s · a− a) is cohomologous to f and zero on
H . Suppose s ∈ G and t ∈ H . The formula F (st) = sF (t) + F (s) = F (s) shows
that F defines a cocycle on G/H . Furthermore, since H is normal in G, we have
F (st) = F (t′s) = t′F (s) for some t′ ∈ H , showing that F (s) is invariant under H ,
i.e. that F takes its values in AH . This proves exactness at H1(G,A). �

We will need the following non-commutative version of Hilbert’s Theorem 90:

Theorem 2.3 (Non-commutative Hilbert 90). Let L/K be a finite Galois extension
with Galois group G. Then, for all n ≥ 1, H1(G,GLn(L)) is trivial.

Proof. Let f : G → GLn(L) be a 1-cocycle on G. For a matrix α ∈ Mn(L),
form the sum x =

∑
s∈G f(s)−1s(α). Then for any σ ∈ G, we have σ(x) =∑

s∈G σ(f(s)−1)σs(α) = f(σ)
∑

σ∈G f(σs)−1σs(α) = f(σ)x, the second equality
following from the identity f(σs) = f(σ)σf(s) on cocycles (in the multiplicative
notation). Hence, f is a coboundary if we can choose α such that x is invertible
(so that we can write f(σ) = σ(x)/x). But the linear form

∑
s∈GXsf(s) on LG

is non-zero since the elements f(s) are invertible, and the result follows by linear
independence of characters. �

We recover the standard version in the case n = 1:

Corollary 2.4 (Hilbert 90). Let L/K be a finite Galois extension with Galois group
G. Then H1(G,L∗) is trivial.

Remark. If the extension L/K is infinite, we also haveH1(Gal(L/K), L∗) = 0 since
we may pass to the projective limit and apply Proposition 2.1.
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2.2. Cohomology of finite cyclic groups. Let G be a cyclic group of order
n, and let s be a generator of G. Let

T =
∑

t∈G

t and D = s− 1.

Since
∑

t∈G ts =
∑

t∈G t, these operators satisfy ND = DN = 0. Thus, for a
G-module A, we have a cochain complex

. . .
D
−→ A

N
−→ A

D
−→ A

N
−→ . . . ,

where the differentials are multiplication by D, resp. by N . Let Hq(A) denote the
q’th cohomology group of this complex. Explicitely, we have

Hq(A) = AG/TA, for q even,

Hq(A) = A0/DA, for q odd,

where A0 denotes the kernel of the trace map a 7→ Ta; of course, AG is the kernel
of D. It turns out that these groups are almost equal to the cohomology groups of
G, as defined above. More precisely,

Hq(G,A) = Hq(A) for all q > 0.

[This follows from the defining properties of the Tate cohomology groups, see Cassels-
Fröhlich, Chap. IV, §6.] Now if 0 → A → B → C → 0 is an exact sequence of
G-modules, the long sequence (∗) of cohomology becomes an exact hexagon:

−−→

−−
→

−−→
−−
→

−−→

−−→

H2(A) H2(B)

H1(C) H2(C)

H1(B) H1(A)

Suppose that H1(A) = H1(G,A) and H2(A) = H2(G,A) are finite, and let
h1(A) and h2(A) be their respective orders. Then the Herbrand quotient of A is

h(A) = h2(A)/h1(A).

Proposition 2.5. Let 0 → A → B → C → 0 be an exact sequence of G-modules.
Then h(B) = h(A)h(C) whenever these are defined.

Proposition 2.6. If A is a finite G-module, then h(A) = 1.

Proof. We have an exact sequence of G-modules

0→ AG → A
D
−→ A→ AG → 0.

In particular, if A is finite, then AG and AG have the same order. On the other
hand, the exact sequence

0→ H1(A)→ AG
T
−→ AG → H0(A)→ 0,

shows that H0(A) and H1(A) have the same order. �

Corollary 2.7. Let A and B be G-modules, and let f : A → B be a G-homo-
morphism with finite kernel and cokernel. Then A and B have the same Herbrand
quotients, whenever these are defined.
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Proof. Suppose that h(A) is defined. We have the exact sequences

0→ ker f → A→ f(A)→ 0

0→ f(A)→ B → coker f → 0.

By Proposition 2.5, we get h(A) = h(ker f)h(f(A)) and h(B) = h(f(A))h(coker f),
and by Proposition 2.6, we get h(A) = h(f(A)) = h(B). �

3. Deeply ramified extensions

Throughout this section, K will be a finite extension of Qp.

3.1. Definitions. We introduce a class of infinite extensions of which all finite
extensions are “almost unramified”, and give equivalent definitions of these. For
their definition, we first need a useful existence lemma:

Lemma 3.1. Suppose L is the union of an increasing filtration of subfields {Ln}n∈I,
and let M be a finite extension of L of degree d. Then there exists an index n0 ∈ I
and an extension Mn0

of Ln0
of degree d, such that Mn0

L = M and Mn0
and L

are linearly disjoint. If the extension M/L is Galois, then Mi0 can be chosen to be
Galois over Ln0

.

Proof. Let {e1, . . . , ed} be a basis of M over L. Define scalars ckij by ei · ej =∑
ckijek. Choose n0 large enough so that all the elements ckij belong Ln0

, and
define Mn0

to be the degree d extension Ln0
(e1, . . . , ed) of Ln0

. If we extend the
Ln0

-algebra Mn0
by L, we obtain M , i.e. Mn0

⊗Ln0
L = M . Since M is a field,

Mn0
and L are linearly disjoint. Consequently, Mn0

L = Mn0
⊗Ln0

L = M , so

Mn0
satisfies the desired conditions. Now if M/L is Galois, then linear disjointness

implies that s(Mn0
)L = M for all s ∈ Gal(M/L). Hence, for m ≥ n0 sufficiently

large, s(Mn0
)Lm = Mn0

Lm. Hence, if we put Mm = Mn0
Lm, then Mm/Mn0

is
Galois, as desired. �

Let Ln ⊂ Ln+1, n ≥ 0, be successive finite extensions of K. Set L =
⋃
Ln ⊂

Qp. For a finite extension M of L, and for a sufficiently large integer n0, let Mn0

be the unique finite extension of Ln0
defined in Lemma 3.1. For all n ≥ n0, let

Mn = Mn0
Ln.

Recall (§1.5) that the conductor fL/K of L over K is the smallest integer for

which L ⊂ Kv−1. We say that L has finite conductor over K if this integer is
bounded. Denote by v the valuation on Qp, and by m the corresponding maximal
ideal. The main result of this section is the following:

Theorem 3.2. The following assertions are equivalent:

(i) L does not have finite conductor over K.
(ii) limn→∞ vK(DLn/Qp

) = +∞.

(iii) H1(L,m) = 0.
(iv) For every finite extension M of L, TrM/L(mM ) = mL.
(v) For every finite extension M of L, limn→∞ v(DMn/Ln

) = 0.

The extension L/K is said to be deeply ramified if it satisfies these equivalent
conditions. We will successively establish the above equivalences. Let us start with
the easiest one:

Proposition 3.3. The following assertions are equivalent:
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(i) The conductor of L over K is bounded.
(ii) vK(DLn/Qp

) is bounded.

Proof. By multiplicativity of the different, Qp can be replaced by K in the
Proposition. By Corollary 1.14, the conductor fLn/K and vL(DLn/K) mutually
bound each other (up to multiplication by a scalar). The result follows by passing
to the limit. �

Lemma 3.4. Assume that L does not have finite conductor over K. Let H be a
any finite extension of Qp. Then, for each v ≥ −1, limn→∞[Ln : Ln ∩H

v] = +∞.
In particular, limn→∞ eLn = +∞.

Proof. The fact that L does not have finite conductor implies that L is an
infinite extension of L ∩ Hv. Indeed, if it was a finite extension, it would be the
product of L ∩ Hv with a finite extension of Qp; these two factors have finite
conductor, implying that L would have finite conductor, hence a contradiction.
Now let {x0, x1, . . .} be a sequence of elements of L ordered such that, if di denotes
the degree of xi over L∩Hv, then the corresponding sequence {d0, d1, . . .} is strictly
increasing. Since xi ∈ Lni for ni sufficiently large, we have that, for all n ≥ ni,
xi ∈ Ln and xi has degree ≥ di over Ln ∩H

v. Consequently, [Ln : Ln ∩H
v] ≥ di

for all n ≥ ni, and the result follows. The statement limn→∞ eLn = +∞ follows
by taking H = Qp and noting that eLn = [Ln : Ln ∩ (Qp)

0] (recall that (Qp)
0

is the fixed field of the inertia group of Gal(Qp/Qp), i.e. the maximal unramified
extension of Qp). �

Proposition 3.5. The following assertions are equivalent:

(i) L does not have finite conductor over K.
(ii) For every finite extension M of L, limn→∞ v(DMn/Ln

) = 0.
(iii) For every finite extension M of L, TrM/L(mM ) = mL.

Proof. (i) =⇒ (ii): We may, without loss of generality, suppose that M is Ga-
lois over L. Indeed, if it is not, we can take its Galois closure and use multiplicatity
of the different; this will obviously not affect the implication. In the same way, we
can choose Mn to be Galois over Ln for all n ≥ n0 (by virtue of Lemma 3.1). For
short we write

H = Ln0
, J = Mn0

, Rvn = Ln ∩H
v, Svn = Mn ∩H

v.

By multiplicativity of the different, DMn/Ln
= DMn/H ·D

−1
Ln/H

. Taking valuations

on each side, we get v(DMn/Ln
) = v(DMn/H)− v(DLn/H) = 1/eMnvMn(DMn/H)−

1/eLnveLn
(DLn/H). By Theorem 1.13, and using multiplicativity of the ramifica-

tion index, we get

v(DMn/Ln
) =

1

eH

∫ ∞

−1

(
1

[Ln : Rvn]
−

1

[Mn : Svn]

)
dv.

Since J/H is finite, we have J ⊂ Hv for v sufficiently large, say v ≥ v0. Fur-
thermore, since Fn and Hv are Galois over H , it is easy to show that Fn and Hv

are linearly disjoint over their intersection Rvn (i.e. Fn ⊗Rv
n
Hv is a field). Hence

[Ln : Rvn] = [LnS
v
n : R′

n(v)].

Claim. L′
n = LnS

v
n.
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Proof. The inclusion LnS
v
n ⊂ L′

n is immediate. Furthermore, J ⊂ Hv for all
v ≥ v0 so that L′

n = JLn ⊂ S
v
nLn. �

It follows that [Ln : Rvn] = [Mn : Svn] for all v ≥ v0, and hence the above
formula for v(DMn/Ln

) reduces to

v(DMn/Ln
) =

1

eH

∫ v0

−1

(
1

[Ln : Rvn]
−

1

[Mn : Svn]

)
dv

≤
1

eH

∫ v0

−1

dv

[Ln : Rvn]

≤
v0 + 1

eH · [Ln : Rv0n ]
,

the last inequality following since Rvn ⊆ Rv0n for all v ≥ v0. Since K does not have
finite conductor, it follows by Lemma 3.4 that this last term, and hence v(DMn/Ln

),
tends to 0 as n→∞.

(ii) =⇒ (iii): Suppose in the first instance that the absolute ramification index
eLn = eLn/Qp

is bounded as n tends to ∞, i.e. there exists and integer n0 ≥ 0
such that eLn = eLn0

for all n ≥ n0. By multiplicativity of the ramification index,

eL/Ln
= 1 (n ≥ n0). Hence L/Ln is unramified for all n ≥ n0. By multiplicativity of

the different, it follows that DMn+1/Ln+1
= DMn/Ln

for all n ≥ n0. By assumption,
v(DMn/Ln

) tends to 0, so that DMn/Ln
must be equal to OMn for all n ≥ n0, i.e.

Mn/Ln is unramified. But by Lemma 1.15, we have TrMn/Ln
(mMn) = mLn and,

passing to the limit, TrM/L(mM ) = mL. Suppose now that eLn is unbounded as
n→∞. Let πn be a uniformizer for Ln. Then limn→∞ v(πn) = limn→∞ 1/eLn = 0.
Let an be defined by TrMn/Ln

(OMn) = πan
n OLn . Using Lemma 1.15, we obtain an

inequality

eLn · v(π
an
n ) = vLn(πan

n ) = an ≤
vMn(DMn/Ln

)

eMn/Ln

= eLn · v(DMn/Ln
),

from which we deduce v(πan
n ) ≤ v(DMn/Ln

). Hence v(πan
n ) → 0 as n → ∞, and

consequently, limn→∞ v(πan+1
n ) = limn→∞(v(πan

n ) + v(πn)) = 0. Pick x ∈ mL.
Then, for n sufficiently large, v(x) > v(πan+1

n ). It follows that x ∈ πan+1
n OLn =

πan
n (πnOLn), which, by definition of an, implies that x ∈ TrMn/Ln

(πnOMn). Pass-
ing to the limit, we get that x ∈ TrM/K(mM ), whence mL ⊂ TrM/L(mM ).

(iii) =⇒ (i): For each t ≥ 0, let Φt be the t’th layer of the cyclotomic Zp-
extension of Qp, i.e. the unique subfield of the cyclotomic Zp-extension of Qp

which is of degree pt over Qp (see Section 3.2, Example 3.12). Let L′
n = LnΦt. We

will prove the implication by contradiction. Namely, we will prove that, if L has
finite conductor over K, then, for all t large enough, we have

(6) TrMn/Ln
(mMn) ⊂ pmLn , for all n ≥ n0,

where n0 is to be defined. By passing to the limit, we obtain that TrM/L(mM ) ⊂

pmL * mL and hence the desired contradiction. So suppose that L has finite
conductor over K. Define an increasing sequence b0 ≤ b1 ≤ . . . of integers by
TrLn/Qp

(OLn) = pbnZp. By Lemma 1.15, bn is the integral part of v(DLn/Qp
) =

vQp(DLn/Qp
)/eLn . By Proposition 3.3, v(DLn/Qp

) is bounded, and hence so is bn;
that is, there is an integer n0 such that, for all n ≥ n0, bn is equal to a fixed constant
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b. Consequently, for n ≥ n0,

(7) TrLn/Qp
(OLn) = pbZp.

Now suppose that (6) does not hold, i.e. that there exists an integer n ≥ n0

such that TrMn/Ln
(mMn) ⊇ pmLn . Then, applying TrLn/Qp

on both sides yields

TrMn/Qp
(mMn) ⊇ pTrLn/Qp

(mLn) ⊇ pTrLn/Qp
(pOLn) = p2TrLn/Qp

(OLn) = pb+2Zp,
the last equality being that of formula (7). This inclusion clearly holds when re-
placing Mn by Φt, i.e.

(8) TrΦt/Qp
(mΦt) ⊇ p

b+2Zp.

Now let ζt be a root of unity of exact order pt+2 if p = 2, and of exact order pt+1

if p ≥ 2. Let Ωt = Qp(ζ); this is an extension of Qp of degree ϕ(t + 2) = pt+1

if p = 2, and of degree ϕ(t + 1) = (p − 1)pt if p > 2 (Serre [7], Chap. IV, §4).
Hence, the degree d = [Ωt : Φt] is equal to p if p = 2, and p − 1 if p > 2. We
have OΩt = Zp[ζt], and hence TrΩt/Qp

(OΩt) ⊆ gptZp. By multiplicativity of the

trace map, TrΦt/Qp
(OΩt) = TrΩt/Φt

(OΩt)
−1 · TrΩt/Qp

(OΩt) = g−1 · TrΩt/Qp
(OΩt).

By restricting the left hand side to mΦt , we get

TrΦt/Qp
(mΦt) ⊆ g

−1 · TrΩt/Qp
(OΩt) ⊆ p

tZp.

Comparing with (8), we must choose t smaller than b + 2, contradicting the fact
that t can be chosen arbitrarily large. �

The next proposition provides a “cohomological” description of deeply ramified
extensions.

Proposition 3.6. The following assertions are equivalent:

(i) L does not have finite conductor over K.
(ii) H1(Gal(Qp/L),m) = 0.

In order to prove the Proposition, we need two little lemmas.

Recall that, in the proof of the previous proposition, we defined a sequence
of positive integers an, for n ≥ n0, by TrMn/Ln

(OMn) = πan
n OLn , πn being a

uniformizer for Ln. Let O0
Mn

denote the kernel of the trace map from OMn to OLn .

Lemma 3.7. Suppose M is a cyclic extension of K, and let s denote a generator
for its Galois group. Then, for all n ≥ n0,

πan
n O

0
Mn
⊂ (s− 1)OMn .

Proof. Let G = Gal(M/L). The ring OMn , viewed as a G-module, contains a
freeOLn [G]-moduleX of rank 1 which is a finite index in OMn . Hence, the inclusion
X → OMn has finite kernel and cokernel, so by Corollary 2.7,OMn andX have same
Herbrand quotient. Consequently, this quotient is 1 (since OMn is a free OLn [G]-
module of rank 1?). Consequently, the groups H0(OMn) and H1(OMn) have same
cardinality, i.e. Card(OLn/π

an
n OLn) = Card(O0

Mn
/(s − 1)OMn). Since O0

Mn
/(s −

1)OMn is an OLn -module, it follows by the structure theorem for modules over
principal ideal domains that it decomposes into the direct sum ⊕ri=1OLn/π

di
n OLn .

By comparing cardinalities, we must have that an =
∑r

i=1 di. Thus, πan
n annihilates

⊕ri=1OLn/π
di
n OLn , or equivalently, O0

Mn
/(s − 1)OMn , and hence each element of

πan
n O

0
Mn

is an element of (s− 1)OMn , which completes the proof. �
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Let M be a finite extension of L of degree d. For each n ≥ n0, let Nn be
an OLn -submodule of OMn of rank d, and suppose that OMmNn ⊂ Nm whenever
m ≥ n. Fix an OLn -basis ω1(n), . . . , ωd(n) for Nn. Recall that the discriminant
dNn = dNn/OLn

is the ideal of OLn generated by det(σi(ωj(n)))2, where σ1, . . . , σd
are distinct embeddings Mn → Qp which leave Ln fixed.

Lemma 3.8. The limit limn→∞ v(dNn) exists in R.

Proof. Since the rank of Nn is independent of n, an OLn-basis for Nn is
also an OLn-basis for Nm for m ≥ n. Hence we define a d × d matrix A =

(aih) ∈ GL(d,OLm), where aih is given by ωi(n) =
∑d

h=1 aihωh(m). It follows
that (det(σj(ωi(n)))2) = det(

∑
aihσj(ωh(m)))2 = det(A)2 det(σj(ωi(m)))2, and

hence

dMn = (det(A)2 det(σj(ωi(m)))2).

Since each aih belongs to OLn , so does det(A)2, and hence, taking valuations of both
sides of the above formula yields v(dMn) = v((det(A)2)) + v(dMm ) ≥ v(dMm). The
sequence v(dNn) is therefore decreasing, and since each term is ≥ 0, it is Cauchy,
and the result follows. �

Recall that the characteristic ideal cn(R) R is the ideal of πDmOLn , where
D =

∑r
i=1 di, and where the di are the exponents appearing in the decomposition

R = ⊕ri=1OLm/π
di
mOLm . Let A be as defined in the proof of Lemma 3.8. Then we

have det(A)OLm = cm(Nm/OLmMn) and also dNnOLm
= (detA)2dNm . Taking val-

uations on both sides of both formulas, we obtain v(cm(Nm/OLmMn)) = v(det(U)),
resp. v(dMn)− v(dMm) = 2v(det(U)). By comparison, we get

v(cm(Nm/OLmMn)) =
1

2
(v(dMn)− v(dMm)),

which, by the above Proposition, implies that for each ε > 0, there exists an integer
Nε such that

(9) v(cm(Nm/OLmMn)) < ε

for all m ≥ n ≥ Nε.

Proof of Proposition 3.6. (i) =⇒ (ii): We will first prove that if L does
not have finite conductor over K, then for any cyclic extension M/L, we have

(10) H1(Gal(M/L),mM ) = 0.

This amounts to show that, if s is a generator for the cyclic group Gal(M/L), and
if m0

M denotes the kernel of the trace map Tr : mM → mL, then m0
M = (s − 1)mM

(cf. § 2.2). Clearly we have (s − 1)mM ⊆ m0
M . Conversely, if x ∈ m0

M , then,
for n ≥ n0 sufficiently large, x ∈ Mn and v(x) > v(πan+1

n ) (recall that when
L does not have finite conductor over K, v(πan+1

n ) tends to 0 as n tends to ∞;
see the proof of Proposition 3.5). Hence x ∈ πan+1

n O0
Mn

, and by Lemma 3.7,
x ∈ (s− 1)πnOMn ⊆ (s− 1)mM .

We now pass to the general case. It suffices to show that H1(Gal(L′/L),mM) =
0 for all finite Galois extensions L′/L, since we may then pass to the inductive limit
and deduce (ii) (Proposition 2.1). But since Gal(L′/L) is a solvable group, it has
a composition series of non-trivial cyclic subgroups, and hence there exists a non-
trivial cyclic subextension K/L of L′/L. The corresponding inflation-restriction
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sequence (Proposition 2.2) is

0→ H1(Gal(M/L),mM )→ H1(Gal(L′/L),mL′)→ H1(Gal(L′/M),mL′),

the left term H1(Gal(M/L),mM ) being 0 by (10). Furthermore, by induction on
the degree of L′/L, it immediately follows that H1(Gal(L′/M),mL′) = 0. Hence
H1(Gal(L′/L),mL′) = 0, and this completes the proof of (i) =⇒ (ii).

(ii) =⇒ (i): Let G = Gal(Qp/L). We assume that H1(G,m) = 0. For all finite
Galois extensions M/L, the inflation-restriction sequence becomes

0→ H1(Gal(M/L),mM )→ H1(G,m)→ H1(Gal(Qp/M),m).

Hence, H1(Gal(M/L),mM ) injects into H1(G,m), and is therefore 0. In particular,
if the extension M/L is cyclic (as above), this implies that m0

M = (s−1)mM , where
again s is a generator of Gal(M/L) and m0

M denotes the kernel of the trace map
Tr : mM → mL. Now let

Nn = OLn · (1 + m0
Mn

),

where m0
Mn

denotes the kernel of the trace map Tr : mMn → mLn . This is an
OLn-module of rank d = [M : L], and it satisfies OMnNn ⊂ Nm whenever m ≥ n
(in particular, formula (9) holds). By the equality m0

M = (s − 1)mM , we have an
inclusion m0

Mn
⊂ (s− 1)mMn , and hence

OLmNn ⊂ Nm = OLm · (1 + m0
Mm

) ⊂ OLm · (1 + (s− 1)mMm .

Thus, there is a natural surjection

Nm/OLmNn �
OLm + m0

Mm

OLm + (s− 1)mMm

'
m0
Mm

(s− 1)mMm

;

in particular, the characteristic ideal cm(m0
Mm

/(s − 1)mMm) contains the charac-
teristic ideal cm(Nm/OLmNn). Now for a fixed ε > 0, the formula (9) implies

(11) v(cm(m0
Mm

(s− 1)mMm)) ≤ cm(Nm/OLmNn) < ε

whenever n ≥ Nε. The ideal mMm is isomorphic as an OLm-module to OMm ,
and the Herbrand quotient of the latter is equal to 1 (see the comment in the
proof of Lemma 3.6). Hence, the OLm-modules H0(G,mMm) = mLm/Tr(mMm)
and H1(m0

Mm
/(s− 1)mMm) have same order. Since this order uniquely determines

the characteristic ideal of these modules (the sum of the exponents di in the direct
sum decomposition above must be equal), we have

v(cm(mLm/Tr(mMm))) = v(cm(m0
Mm

/(s− 1)mMm)).

If, for each n we define an integer an by TrMm/Lm
(mMm) = πam

n mLm , then we get

v(cm(mLm/Tr(mMm))) = v(cm(π−am
m )) = v(πam

m ), and by 11, we get v(πam
m ) < ε for

m ≥ n ≥ Nε, or equivalently,

v(πan
n )→ 0, as n→∞.

Using exactly the same arguments as in the proof of Proposition 3.5, (ii) =⇒ (iii),
we conclude that TrM/L(mM ) = mK . By Proposition 3.5, we deduce that L does
not have finite conductor over K. �
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3.2. Ramified Zp-extensions. Let L/K be a Zp-extension, that is, a Galois
extension whose Galois group G is isomorphic to Zp. Closed subgroups of Zp are
of the form pnZp, n ≥ 1; denote these by G(n). Thus we may form a tower

K = K0 ⊂ K1 ⊂ . . . ⊂ K∞ =
⋃

n≥0

Kn,

for which Kn/K is cyclic of order pn (in fact, Gal(Kn/K) ' Zp/pnZp ' Z/pnZ).
Of particular interest will be the cyclotomic Zp- extensions.

Proposition 3.9. Suppose that K is a local field, and suppose that L/K is a
ramified Zp-extension. The L is deeply ramified.

Proof. Let G = Gal(L/K), and let r be the local reciprocity map defined in
Chap. II, Section 1.3. By Theorem 1.21 of Chapter II, we have Gv = r(U iK), where
i is the smallest integer ≥ v. But since L/K is ramified, r(U0

K) must be infinite,
and since U i is of finite index in U0 for all i, this implies that the conductor of L
over K is not finite. Hence L is deeply ramified. �

Suppose again that L/K is a ramified Zp-extension. In this case the ramifica-
tion groups of G (in the upper numbering) are easily identifiable. Let −1 = v−1 <
v1 < v2 < . . . be the gaps in the filtration {Gv} of G.

Proposition 3.10. Suppose L/K is a ramified Zp-extension. Let n0 ≥ 0 be the
integer such that Kn0

/K is the maximal unramified extension of K. Then, for all
i ≥ −1, we have

Gv = G(n0 + i+ 1), for vi < v ≤ vi+1.

Proof. By induction on i, the case i = −1 being immediate. Assume it holds
for i. By Proposition 1.11, Upvi+1

⊂ Uvi+1p if vi+1 ≤ eK/(p − 1), and Uvi+1
'

Uvi+1+eK if vi+1 > eK/(p − 1), so that Upvi+1
⊂ Uvi+1+eK in this case. Hence

there exists an integer r (namely min(vi+1p, vi+1 + eK)) such that Upvi+1
⊂ Ur, and

therefore G(n0 + i+2) = (G(n0 + i+1))p = (Gvi+1)p ⊂ Gr, the first equality being
true by definition of the subgroups groups G(n), and the second equality being our
induction hypothesis. Conversely, if v > vi+1, G

v is strictly contained in Gvi+1 =
G(n0 + i+1) since vi+1 is a gap; hence it must be contained in a smaller subgroup,
i.e. Gv ⊆ G(n0 + i + 2). We thus have the inclusions Gv ⊆ G(n0 + i + 2) ⊆ Gr,
vi+1 < v ≤ r. Since r ≥ v, Gr ⊆ Gv, and hence Gv = G(n0 + i + 2), and the
induction is complete. �

Consequently, we have a nice description of the gaps in the filtration of G for
large enough indices:

Proposition 3.11. For all i such that vi > eK/(p− 1), we have vi+1 = vi + eK .

Proof. By Proposition 1.11, we have an isomorphism Uvi ' Uvi+eK defined
by x 7→ xp, so that Upvi

can be identified to Uvi+eK . Now Gvi+1 = G(n0 + i +
1) = ρk∞/K(Upvi

) = ρK∞/K(Uvi+eK ) = Gvi+eK , the first equality following from
Proposition 3.10. Hence we must show that vi + eK is a gap, i.e. that for any
ε > 0, Gvi+eK+ε is strictly included in G(n0 + i + 1). But this is true since
Gvi+eK+ε = ρK∞/K(Uvi+eK+n(ε)) = ρK∞/K((Uvi+n(ε)

p) ⊆ G(n0 + i+ 2) (here n(ε)
denotes the smallest integer ≥ ε). �
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Example 3.12. Let µp∞ be the group of all p-power roots of unity, and let Qp(µp∞)
be the extension of Qp obtained by adjoining µp∞ to Qp. The action on µp∞ of
the corresponding Galois group G = Gal(Qp(µp∞)/Qp) is given by the cyclotomic

character χ : G → Aut(µp∞) = Z∗
p define by s(ζ) = ζχ(s) for ζ ∈ µp∞ and

s ∈ G. Since the cyclotomic equation is irreducible, this map is an isomorphism.
Furthermore,

Z∗
p =

{
µp × (1 + 2pZp) if p = 2,
µp−1 × (1 + pZp) if p > 2.

The p-adic logarithm maps (1 + nZp) isomorphically to nZp ' Zp for any n > 0,
and hence we see that the Galois group Gal(Qp(µp∞)/Qp) ' Z∗

p is isomorphic to
the product ∆ × Zp, where ∆ ' µp for p = 2, and ∆ ' µp−1 for p > 2. The
cyclotomic extenion of Qp is by definition the subfield of Qp(µp∞) fixed by ∆.

Theorem 3.13. Suppose K∞/K is a ramified Zp-extension. Let e = eK/Qp
be

the absolute ramification index of K. Then there is a constant c and a bounded
sequence {an} such that

vK(DKn/K) = en+ c+ p−nan.

Before proving the theorem, let us illustrate it with a simple example:

Example 3.14. Let p > 2. Set Kp = Q(µp), Kn = Qp(µpn+1). We have K∞ =
Qp(µp∞). Then Kn is totally ramified of degree ϕ(pn) = pn−1(p − 1) over Qp,
where ϕ is the Euler ϕ-function (Serre [7], Chap. IV, §4, Prop. 17). Furthermore,

using the formulas mK = m
pn

Kn
and DKn/Qp

= m
npn−(n+1)pn−1

Kn
, we obtain

DKn/K = DKn/Qp
·D−1

K/Qp
= m

(n+1)pn+1−(n+2)pn

Kn
·m

−(p−2)
K

= m
(n+1)pn+1−(n+2)pn

Kn
·m−pn+1+2pn

Kn

= m
npn(p−1)
Kn

.

Thus, vK(DKn/K) = e−1
Kn/K

· vKn(DKn/K) = p−nnpn(p− 1) = n(p− 1) = en.

Proof of theorem 3.13. By multiplicativity of the different, we may as-
sume that K∞/K is totally ramified. By Theorem 1.13, we get

(12) vK(DKn/K) = e−1
Kn/K

vKn(DKn/K) =

∫ ∞

−1

(1− [Kn : Kn ∩K
v]−1)dv.

We have [Kn : Kn ∩K
v] = Gal(Kn/K)v = (G/G(n))v = GvG(n)/G(n), the last

equality following from Herbrand’s Theorem. By Proposition 3.10 (applied with
n0 = 0 since K∞/K is totally ramified), we have Gv = G(i + 1) if vi < v ≤ vi+1

(i ≥ −1). Hence Card(Gv(G(n)/G(n)) = pn−i−1 if vi < v ≤ vi+1 and i ≤ n − 1,
and Card(Gv(G(n)/G(n)) = 1 otherwise, so that our integral expression becomes

vK(DKn/K) =

n−1∑

i=−1

(vi+1 − vi)(1 − p
i+1−n).
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Now by Proposition 3.10, for i large enough, say i ≥ r, vi+1 − vi = e. If n ≥ r + 1,
the sum decomposes into

vK(DKn/K) =

r−1∑

i=−1

(vi+1 − vi)(1− p
i+1−n) +

r−1∑

i=−1

e(1− pi+1−n)

= en− er +

r−1∑

i=−1

(vi+1 − vi)

︸ ︷︷ ︸
c

+p−n
n−1∑

i=−1

(vi − vi+1)p
i+1

︸ ︷︷ ︸
an

.

For n < r + 1, we let i run up to r + n − 1 in formula (12) and subtract the
corresponding higher terms. Thus, by conveniently adding a constant term to an,
we obtain the same formula. [I am not sure whether an is bounded]. �

Proposition 3.15. Let G = Gal(K∞/K). Then H0(G, K̂∞) = K.

Proof. Let γ be a topological generator of G. By definition, H0(G, K̂∞) is the
kernel of the the automorphism γ−1. Hence it suffices to show that γ−1 annihilates
K, but this now follows from Tate [9], §3.1, Prop. 7. [I did not understand his
argument.] �

3.3. The action of Gal(Qp/K) on C. We keep the notations of the previous
section. Let C denote the completion of the algebraic closure of Qp. It is alge-

braically closed, by Krasner’s lemma. The Galois group G = Gal(Qp/K) operates
on C by continuity.

Theorem 3.16. Suppose that K∞ is deeply ramified, and let H = Gal(Qp/K∞).

Then H0(H,C) = K̂∞ and Hi(H,C) = 0, for i > 0.

Lemma 3.17. Suppose that K∞ is deeply ramified and let L∞ be a finite extension
of K∞, with Galois group G∞ = Gal(L∞/K∞). Let c be a fixed constant > 1. For
each y ∈ L∞, there exists z ∈ L∞ such that

|y − TrL∞/K∞
(z)| ≤ c max

s∈G∞

|s(y)− y| and |z| < c|y|.

Proof. Since eKn/Qp
tends to ∞ as n → ∞, it is clear that, for every ε > 0,

there exists an element x ∈ mK∞
with |x| ≥ 1 + ε. Since K∞ is deeply ramified,

TrL∞/K∞
(mL∞

) = mK∞
(cf. Theorem 3.2), and hence there exists an element

w ∈ mL∞
such that TrL∞/K∞

(w) ≥ c−1. Let z = y · w · TrL∞/K∞
(w)−1; then

|z| ≤ c|y||w| ≤ c|y| and TrL∞/K∞
(z) = TrL∞/K∞

(w)−1
∑
s∈G∞

s(y)s(w). Writing

y as y · TrL∞/K∞
(w)−1 ·

∑
s∈G∞

s(w), we get

TrL∞/K∞
(z)− y =

1

TrL∞/K∞
(w)
·

∑

s∈G∞

s(w)(s(y) − y).

Taking absolute values, and using the fact that |s(w)| < 1, we obtain the desired
inequality. �

Proof of Theorem 3.16. We first prove that H0(H,C) = CH = K̂∞. This
is an easy consequence of the previous lemma. First note that, for all n ≥ 1, any
element of C can be written as a sum x + πny, where x ∈ Qp, y ∈ OC, and π is a

uniformizer of some finite extension of Qp contained in K∞. Fix an element α ∈ CH

and define, for each n ≥ 1, elements xn and yn by xn+πnyn = α. By Lemma 3.17,
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for each element in the sequence {xn}, there is an element zn ∈ K∞ such that
|xn − zn| ≤ c · maxs∈H |s(xn) − xn|. Since H acts on OC, s(xn) − xn ∈ π

nOC for
all s ∈ H and all n ≥ 1, and hence |xn− zn| tends to 0 as n tends to infinity (πnyn
becomes arbitrarily small). Likewise, xn tends tends to α as n tends to infinity and

hence so does zn. Since K̂∞ is complete and zn ∈ K∞ for all n, we get α ∈ K̂∞. �

Theorem 3.18. Suppose K is a finite extension of Qp, and let G be its absolute
Galois group. Then H0(G,C) = K and H1(G,C) is a one-dimensional vector space
over K.

Proof. Let K∞ be the cyclotomic Zp-extension of K defined in Example 3.12.
Since it is ramified, it is deeply ramified by Proposition 3.9.Let G/H be its Galois
group over K, where H = Gal(Qp,K∞). By Theorem 3.16, H0(G,C) = CG =

(CH)G/H = (K̂∞)G/H . By Proposition 3.15, this is equal to K, so the first asser-
tion is clear. For the second assertion, we have the inflation-restriction sequence
(Proposition 2.2)

0→ H1(G/H, K̂∞)→ H1(G,C)→ H1(H,C).

The group H1(H,C) is trivial by Prop. 3.16, and H1(G/H, K̂∞) has dimension 1
over K, hence the result. �

Given a continuous homomorphism ψ : G → K∗, we denote by C(ψ) the field
C endowed with the “twisted action”

s̃(x) = ψ(s)s(x), s ∈ G, x ∈ C.

Using similar arguments to the previous, we obtain the following:

Theorem 3.19. Let K and G be as in Theorem 3.18. Furthermore, let IK denote
the inertia subgroup of G, and let ψ : G→ K∗ be a continuous homomorphism such
that ψ(IK) is infinite. Then H0(G,C(ψ)) = H1(G,C(ψ)) = 0.

Proof. Notice first that since G is compact, ψ takes its values in the group
Zp of units of Q∗

p. If ψ(IK) is infinite, then it contains a subgroup pnZp, for some
n ≥ 0. Consequently, L∞ contains a ramified Zp-extension K∞ of K, and the result
follows by Proposition 3.16. �





CHAPTER 2

p-adic Hodge-Tate theory

In this chapter, we introduce p-adic representations, which are finite-dimensional
vector spaces over Qp together with a continuous action of the absolute Galois group
of some local field. We establish Tate’s theorem, relating those with a “Hodge-Tate
decomposition” to those which are “locally algebraic”. Before doing so, we con-
struct in Section 1 an important example of a p-adic representations arising from
Lubin-Tate formal groups and which will play a central role in the proof of the the-
orem. We also use this opportunity to prove the theorem of Hasse-Arf (Chapter I,
Theorem 1.9).

1. Lubin-Tate formal groups

1.1. Formal group laws. Let R be a ring. A formal group law over R is a
power series F ∈ R[[X,Y ]] satisfying

(i) F (X,Y ) ≡ X + Y (mod deg 2);
(ii) F (X,F (Y, Z)) = F (F (X,Y ), Z);
(iii) F (X,Y ) = F (Y,X);
(iv) There is a unique i(X) ∈ R[[X ]] such that F (X, i(X)) = 0;
(v) F (X, 0) = X and F (0, Y ) = Y .

Two power series are congruent (mod deg n) if they agree on terms of degree
strictly less that n. Note that (ii) makes sense because (i) ensures that F (X,Y )
has no constant term. Note also that conditions (ii), (iii) and (iv) together imply
conditions (i) and (iv).

Examples 1.1. (a) Let K be a local field. If R = OK , then the maximal ideal mK

of OK can be given the structure of an abelian group by defining x+F y = F (x, y)
(convergence is guaranteed since K is complete). We will denote this group by
F (mK).
(b) By letting F (X,Y ) = X + Y + XY in the previous example, we recover the
usual multiplicative group (1 + mK,×). This law is called the formal multiplicative
group law.
(c) Let E/K be an elliptic curve over K, given by the Weierstrass equation y2 +
a1xy + a3y = x3 + a2x

2 + a4x + a6, with a1, . . . , a6 ∈ K. Let π be a uniformizer
for OK . Then the kernel of the reduction of E modulo π contained in E(K) is
isomorphic to F (mK), where F is given by

F (X,Y ) = X + Y − a1XY − a2(X
2Y +XY 2)

−(2a3X
3Y − (a1a2 − 3a3)X

2Y 2 + 2a3XY
3) + . . .

27
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Let F,G be two formal groups over R. A morphism f : F → G of formal
groups is a power series f ∈ R[[T ]] with no constant term, satisfying

f(F (X,Y )) = G(f(X), f(Y )).

The notion of endomorphism and isomorphism of a formal group are defined ac-
cordingly. Furthermore, the set End(F ) of endomorphisms of F may be given the
structure of a ring, when equipped with the following addition and multiplication:

(f +F g)(X) = F (f(X), g(X)),

(f ◦F g)(X) = f(g(X)).

1.2. Lubin-Tate formal groups. Suppose now, and for the rest of this sec-
tion, that K is a local field of characteristic 0. In particular, K is a finite extension
of Qp, and its separable and algebraic closures coincide. Let q = Card(k) > 0 be
the cardinality of its residue field k, and let π ∈ OK be a uniformizer. Let Fπ be
the set of formal power series in OK [[X ]] satisfying

(†)
f(X) ≡ πX (mod deg 2);
f(X) ≡ Xq (mod π).

The second condition means that f(X) = Xq, where f ∈ k[[X ]] denotes the reduc-
tion of f modulo π.

Theorem 1.2. For each f ∈ Fπ, there is a unique formal group law Ff for which f
is an endomorphism. This formal group law is called the Lubin-Tate formal group
over OK for π.

For the proof, we will need the following fundamental lemma:

Lemma 1.3. Let n be a positive integer, and let φ(X1, . . . , Xn) be a linear form
in X1, . . . , Xn with coefficients in OK . Let f, g ∈ Fπ. Then there exists a unique
power series F ∈ OK [[X1, . . . , Xn]] such that

F ≡ φ (mod deg 2)
f ◦ F = F ◦ (g × . . .× g).

Proof. To ease notation, write X = (X1, . . . , Xn), and g = g × . . . × g. By
the first condition, F must not contain any constant term, and hence it must be
of the form F =

∑∞
i=1Hi(X), where Hi is a homogeneous polynomial of degree i.

Let Fr =
∑n

i=1Hi(X). Then the conditions of the lemma can be restated as

F1 = φ
f ◦ Fr ≡ Fr ◦ g (mod deg (r + 1)) for all r ≥ 1.

So let us determine Hi by induction. For i = 1, we must have H1 = φ. Suppose
that for each i ≤ r, Hi is uniquely determined. We then construct Hr+1 in the
following way. Notice first that f ◦ Fr and Fr ◦ g agree on terms of degree ≤ r,
by hypothesis. Going one degree up, there might be an “error” term Er+1, i.e.
we have f ◦ Fr ≡ Fr ◦ g + Er+1 (mod deg (r+2)), with Er+1 ≡ 0 mod deg (r+1).
Recalling that f(X) = πX +X2(

∑
. . .), we have

f ◦Fr+1 = f ◦ (Fr+Hr+1) = f ◦Fr+πHr+1 +H2
r+1

(∑
. . .

)
+2FrHr+1

(∑
. . .

)
,

and hence

(13) f ◦ Fr+1 ≡ f ◦ Fr + πHr+1 (mod deg (r + 2)).
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On the other hand, we have

Hr+1◦g =
∑

i

ci

n∏

j=1

g(Xj)
αj =

∑

i

ciπ
r+1




n∏

j=1

X
αj

j + (terms of degree ≥ r + 2)



 .

Hence, Hr+1 ◦ g = πr+1Hr+1 (mod deg (r+2)), and together with the identity
Fr+1 ◦ g = Fr ◦ g +Hr+1 ◦ g, we deduce

(14) Fr+1 ◦ g ≡ Fr ◦ g + πr+1Hr+1 (mod deg (r+2)).

Combining the identities (13) and (14), we have that

Hr+1 =
−Er+1

π − πr+1
,

is the unique choice of Hr+1 which works. Thus it remains to prove that Hr+1

indeed is a polynomial with coeffiecients in OK , i.e. that Er+1 ≡ 0 (mod π).
But f and g are congruent to Xq mod π, so Er+1 = f ◦ Fr(X) − Fr ◦ g(X) ≡
Fr(X)q −Fr(X

q) ≡ 0 (mod π). Thus we have an explicit construction of F , which
is unique; this completes the proof. �

Proof of Theorem 1.2. By Lemma 1.3, applied with n = 2, φ(X,Y ) =
X+Y and f = g, it suffices to show that the unique power series Ff that we obtain
is indeed a formal group law. We first show associativity: by definition, we have

Ff (Ff (X,Y ), Z) ≡ X + Y + Z (mod deg 2)
Ff (Ff (f(X), f(Y )), f(Z)) = f(Ff (Ff (X,Y ), Z)).

The same holds for Ff (X,Ff (Y, Z)), and hence the unicity part of the lemma
shows that Ff (Ff (X,Y ), Z) = Ff (X,Ff (Y, Z)). The same argument applies for
Ff (X, 0) and X , showing the existence of the neutral element. Commutativity
and congruence mod 2 is obvious, and, as noted above, the existence of inverse
is automatic. Hence Ff is the desired unique formal group law for which f is an
endomorphism. �

We have a dual result:

Proposition 1.4. Let f ∈ Fπ, and let Ff be the corresponding formal group law.
Then for all a ∈ OK , there is a unique endomorphism [a]f ∈ End(Ff ) satisfying

[a]f (X) ≡ aX (mod deg 2)

[a]f ◦ f = f ◦ [a]f .

[Of course, when a = π, this endomorphism is f itself.]

Proof. By Lemma 1.3 with n = 1, φ(X) = aX and f = g, we immediately get
existence and uniqueness of [a]f . Since Ff ([a]f (X), [a]f (Y )) and [a]f (Ff (X,Y )) are
congruent to aX+aY (mod deg 2) and commute with f , they must be equal, again
by the uniqueness part of Lemma 1.3. Thus [a]f is an endomorphism of Ff . �

Example 1.5. If K = Qp, π = p, then the formal power series

f(X) = (1 +X)p − 1 = pX +

(
p

2

)
X2 + . . .+Xp
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verifies conditions (†) above. It is an endomorphism of the formal multiplicative
group law F (X,Y ) = X + Y +XY since F (f(X), f(Y )) = (1 +X)p(1 +Y )p − 1 =
f(F (X,Y )). On the other hand, for any a ∈ Zp, the formal power series

[a]f (X) =

∞∑

i=1

(
a

i

)
X i = (1 +X)a − 1.

is the unique endomorphism of F commuting with f , and whose derivative at the
origin is a.

Proposition 1.6. The map ϕ : OK → End(Ff ), a 7→ [a]f is an injective ring
homomorphism.

Proof. We use the same technique as above to show that ϕ is a homomor-
phism. Namely, one readily verifies that [a+ b]f and Ff ◦ ([a]f × [b]f ) are congru-
ent to (a + b)T (mod deg 2), and commute with f , and hence must be equal by
Lemma 1.3. In the same way one obtains [a · b]f = [a]f ◦ [b]f . Injectivity of ϕ is
clear since [a]f = aX (mod deg 2). �

A Lubin-Tate formal group Ff together with the homomorphism ϕ of Propo-
sition 1.6 is called a formal OK-module for π. If we pick group elements in m, the
maximal ideal of the ring of integers of Qp, we obtain an OK -module, in the usual
sense, by setting x + y = x+F y = Ff (x, y) and a · x = [a]f (x), x, y ∈ m, a ∈ OK .
Actually, this module depends solely on π:

Proposition 1.7. Let f, g be elements of Fπ. Then the corresponding formal
groups Ff and Fg are isomorphic.

Proof. Let [a]f,g be the unique solution of [a]f,g(X) ≡ aX (mod deg 2) and
f([a]f,g(X)) = [a]f,g(g(X)). Applying the arguments of the proof of Proposi-
tion 1.6, one sees that [a]f,g is a homomorphism of Ff into Fg. If a is a unit
in OK , then [a]f,g is invertible (with inverse [a−1]f,g), and thus [a]f,g gives an
isomorphism between Ff and Fg. �

1.3. The abelian representation associated to a Lubin-Tate formal

group. Fix a uniformizer π ∈ OK and a formal power series f ∈ Fπ, and let
Ff ∈ OK [[X,Y ]] be the correponding formal group law, viewed as a formal OK-

module. Let m be the maximal ideal of the ring of integers of Qp, and let q be the
cardinality of the corresponding residue field. Let Enf be the kernel of [πn]f , i.e.

the set {x ∈ m | πn · x = 0}; since all its elements are killed by πnOK , Enf is also

an OK/π
nOK-module. We first have a general fact:

Lemma 1.8. Let R be a ring, and M an R-module. Let ψ : M → M be a
homomorphism, and let Mn be the kernel of the composition ψ ◦ . . . ◦ ψ, n times.
If ψ is surjective, and if M1 has cardinality q, then Mn has cardinality qn.

Proof. By induction on n, the case n = 1 being clear. Since ψ is surjective,

we have an exact sequence 0→ M1 →Mn
ψ
−→ Mn−1 → 0. By hypothesis, M1 and

Mn−1 have cardinality q, resp. qn−1, so Mn has cardinality qn. �

Proposition 1.9. For each n ≥ 0, the OK/π
nOK-module Enf is free of rank 1.
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Proof. Let F = Ff . By Proposition 1.7, we may without loss of generality
choose f(X) = πX +Xq = [π]f (X). This polynomial is separable, and hence has
q solutions, which belong to m. Indeed, if α is a root, then either α = 0, in which
case v(α) = +∞ (here, v denotes the valuation on Qp), or v(x) = 1/(q − 1) > 0.

Hence E1
f = ker f has cardinality q.

Now let f (n) = f ◦ . . . ◦ f be the composition n times, and notice that Enf =

ker f (n). We want to show that [π]f : F (m)→ F (m) is surjective. So let a ∈ F (m),
and let α be a solution to the equation πX+Xq−a. Clearly, [π]f is surjective if and
only if α belongs to F (m). But we have 0 < v(y) = inf(v(α) + 1, qv(α)) ≤ qv(α),
i.e. α ∈ F (m). Applying Lemma 1.8 with R = OK , M = F (m) and f = [π]f ,

we conclude that Enf has cardinality qn. Let α ∈ Enf \E
n−1
f . Multiplication by α

defines an OK-module homomorphism OK → Enf with kernel πnOK . The result
follows by comparing cardinalities. �

The Tate module Ef of F is the torsion submodule of F (m), that is,

Ef = lim
←−

Enf =

∞⋃

n=1

Enf .

Applying Proposition 1.9, and passing to the limit, we obtain the following charac-
terization of Ef :

Corollary 1.10. The Tate module Ef is isomorphic, as an OK-module, to K/OK .

Let UK denote the group of units of OK . Recall (Chapter I, Prop. 1.10) that we
have isomorphisms UK/U

n
K ' (OK/mK)∗ for all n ≥ 1. Hence, by Proposition 1.9,

we get:

Corollary 1.11. For each n ≥ 1, the map ϕ : a 7→ [a]f induces isomorphisms

OK/π
nOK ' End(Enf ) and UK/U

n
K ' AutOK (Enf ).

Let Kn
π = K(Enf ), and let Kπ =

⋃
Kn
π . This is an extension of K with Galois

group Gal(Kπ/K) = lim
←−

Gal(Kn
π/K).

Proposition 1.12. For each n ≥ 0, the extension Kn
π/K is abelian, totally rami-

fied, of degree qn−1(q− 1), and its Galois group is isomorphic to UK/U
n
K. Further-

more, if α ∈ Enπ\E
n−1
π , then Kn

π = K[α], and α is a uniformizer.

Proof. As in the proof of Proposition 1.9, choose f(X) = πX + Xq. Let
α ∈ Enf \E

n−1
f , and define φn(X) = f (n)(X)/f (n−1)(X). One readily verifies that

φn is an Eisenstein polynomial of degree qn−1(q − 1), and that φn(α) = 0. Hence
K(α)/K is totally ramified of degree qn−1(q− 1), and α is a uniformizer (Serre [7],
Chap. I, §6, Prop. 17).

We have a map ϕ : Gal(Kn
π/K/K)→ Aut(Enπ ), which maps s ∈ Gal(Kn

π/K/K)
to its restriction s|En

π
to Enπ . Since Kn

π is generated by Enπ , this map is injective.
But Card(Gal(Kn

π/K/K)) ≥ [K(α) : K] = Card(UK/U
n
K) = Card(Aut(Enπ )), the

last equality following from Lemma 1.11. Thus ϕ is bijective and the extension
Kn
π/K is abelian. Finally, K(α) ⊂ K(Enπ ), and [Kn

π : K] = [K(α) : K], so that
Kn
π = K(α). �

Hence Gal(Kπ/K) = lim
←−

Gal(Kn
π/K) ' lim

←−
UK/U

n
K ' UK , and consequently:
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Corollary 1.13. The extension Kπ/K is abelian, totally ramified, and its Galois
group is isomorphic to UK .

Now let Lπ = KnrKπ, where Knr is the maximal unramified extension of
K; since Knr and Kπ are linearly disjoint, we have Gal(Lπ/K) = Gal(Kπ/K) ×
Gal(Knr/K). Let π and ω be uniformizers of K with ω = uπ for some unit u ∈ O∗

K .
Let f ∈ Fπ and g ∈ Fω, and let ϕ be the Frobenius automorphism of Gal(Knr/K).

Let A be the ring of integers of K̂ur. We will need the following:

Proposition 1.14. There exists a power series ϕ ∈ A[[X ]] with ϕ(X) ≡ εX (mod
deg 2), for some ε ∈ A∗, such that

(a) σϕ = ϕ ◦ [u]f ;
(b) ϕ ◦ Ff = Fg ◦ (ϕ× ϕ);
(c) ϕ ◦ [a]f = [a]g ◦ ϕ for all a ∈ A.

[Hence ϕ is an A-module isomorphism of Ff into Fg.]

Lemma 1.15. Let A be the ring of integers of K̂ur. The sequences

−−−→ −−−→ −−−−→
σ−1

−−−−→

−−−→ −−−→ −−−→
σ/id

−−−−→

0 OK A A 0

1 O∗
K A∗ A∗ 1

are exact.

Proof. Let B be the ring of integers of Knr, and let mB be its maximal ideal.
The residue field B/mB is an algebraic closure k of k. By passage to the limit, it
suffices to show that the sequence

(∗) 0→ OK/m
n
K → B/mn

B
σ−1
−−−→ B/mn

B → 0

is exact. We prove it by induction. For n = 1, the sequence is

0→ k → k
σ−1
−−−→ k → 0,

which is clearly exact. Now suppose that (∗) is exact. We may apply the snake
lemma to the following diagram with exact rows

−−−−→ −−→ −−→ −−−−→−−→

σ−1

−→

ψ=σ−1

−−→

σ−1

−−−−→ −−→ −−→ −−−−→

0 B/mn
B B/mn+1

B B/mB 0

0 B/mn
B B/mn+1

B B/mB 0.

Together with the hypothesis that (∗) is exact, this proves that Card(ker ψ) = qn+1.
However, ker ψ contains OK/m

n+1
K , and by comparing cardinalities, this implies

that 0 → OK/m
n+1
K → B/mn+1

B
σ−1
−−−→ B/mn+1

B → 0 is exact, completing the
induction argument. Exactness of the second sequence follows immediately. �

Lemma 1.16. There exists a power series ϕ ∈ A[[X ]] with ϕ(X) ≡ εX (mod deg
2), for some ε ∈ A∗, verifying condition (a) of Propositon 1.14.

Proof. We construct ϕ by successive approximation. That is, we construct a
sequence (ai) of elements of A such that the polynomial ϕn(X) = a1X + a2X

2 +
. . .+ bnX

n verifies condition (a), that is,

(∗) σϕn = ϕn◦[u]f .
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By Lemma 1.15, there exists ε ∈ A∗ verifying σε = uε. So for n = 1, we choose
a1 = ε, and (∗) clearly holds. Suppose now that ϕn has been constructed. Let
b ∈ A be such that ϕn ◦ [u]f −σϕn ≡ bX

n+1 (mod deg r+2), and let c ∈ A be such
that σc − c = b/(εu)n+1. If we choose an+1 = cεn+1, a small computation shows
that ϕn+1 verifies (∗). By induction, the map ϕ(X) = εX+a2X

2+ . . .+anX
n+ . . .

verifies condition (a). �

Lemma 1.17. In Lemma 1.16, we may choose ϕ such that g = σϕ ◦ f ◦ ϕ−1.

Proof. Let h = σϕ ◦ f ◦ϕ−1. Then h = ϕ ◦ [u]f ◦ f ◦ϕ
−1 = ϕ ◦ f ◦ [u]f ◦ϕ

−1.
Since f and [u]f have coefficients in OK , it follows that σh = σϕ◦ f ◦ [u]f ◦σϕ

−1 =
σϕ ◦ f ◦ ϕ−1 = h. Hence h ∈ OK [[X ]]. Moreover, h ∈ Fρ, where ρ = (σε/ε)π.
Recall that [a]g,h denotes the unique solution of [a]g,h(X) ≡ aX (mod deg 2) and
g([a]g,h(X)) = [a]g,h(h(X)). Now let ϕ̃ = [1]g,h. Then σϕ̃ ◦ f ◦ σϕ̃ = g, and ϕ̃ also
verifies the conditions of Lemma 1.16. �

Proof of Proposition 1.14. Let ϕ be as in Lemma 1.17. Using the unique-
ness part of Lemma (recall the technique used in the proof of Theorem 1.2), we
have

ϕ ◦ Ff (ϕ
−1 × ϕ−1) = Fg and ϕ ◦ [a]f = [a]g ◦ ϕ, ∀ a ∈ A.

Hence, ϕ verifies condions (a)-(c). �

Now let rπ : K∗ → Gal(Lπ/K) be the homomorphism satisfying:

(i) rπ(π) is the identity on Kπ and the Frobenius automorphism on Knr, and
(ii) If u ∈ UK , then rπ(u) is equal to [u−1]f on Kπ and the identity on Knr.

Proposition 1.18. The homomorphism rπ is independent on the choice of uni-
formizer π.

Proof. Let ω = uπ be another uniformizer (u a unit), and let f ∈ Fπ, g ∈ Fω.
Notice that it suffices to prove that rπ and rω coincide on uniformizers only, since
these generate the multiplicative group K∗; i.e. we must show that rπ(ω) = rω(ω).
Clearly rπ(ω) and rω(ω) both induce the Frobenius automorphism on Knr. Hence
it suffices to prove that rπ(ω) is the identity on Kω. Let α ∈ Eg, and β = ϕ−1(α),
where ϕ is the map of Proposition 1.14. Set s = rπ(ω) = rπ(u) · rπ(π). Since the

coefficiens of ϕ are contained in K̂nr, it follows by Proposition 1.14 that sϕ = σϕ =
ϕ◦ [u]f . Then s(α) = s(ϕ(β)) = sϕ(s(β)) = (ϕ◦ [c]f ◦ [u

−1]f )(µ) (using the defining
properties of rπ on units and on π). This is readily seen to be equal to α, which
completes the proof. �

The map rπ : K∗ → Gal(Lπ/K) is called the local reciprocity map.

Proposition 1.19. Lπ is the maximal abelian extension Kab of K.

Proof. Let I = Gal(Kab/Knr) and I ′ = Gal(Lπ/K
ur) be the inertia sub-

groups of the extensions Kab/K, resp. Lπ/K. Since Kπ and Knr are abelian and
linearly disjoint, it follows by the identity Gal(Lπ/K) = Gal(Kπ/K)×Gal(Knr/K)
that Lπ is contained in Kab. Consequently, we have a surjection I � I ′ induced by
the quotient map Gal(Kab/Knr) � Gal(Lπ/K

nr) (Serre [7], Chap. I, §7, Prop. 22
applied to the tower Kab/Lπ/K). Since rπ(UK) fixes Knr, we have a surjection
rπ : UK � I. Hence we obtain a sequence of surjective maps

UK � I � I ′
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Furthermore, UK and I ′ are isomorphic by the map u 7→ u−1, so that the above
groups are all isomorphic. In particular, Gal(Kab/Knr) = I ' I ′ = Gal(Lπ/K

nr),
and since Kab and Lπ both contain Knr, we get Kab = Lπ. �

Example 1.20. Let K = Qp, π = p, and let f = (1 + X)p − 1 of Example 1.5.
Then Ef = µp∞ , the group of all pn’th roots of unity n ≥ 0, and Kπ = Qp(µp∞).
The maximal unramified extension of Qp is the field Knr = Qnr

p generated over
Qp by the roots of unity of order prime to p (Serre [7], Chap. IV, §4). Then the
compositum Lπ = Qcycl

p = Qp(µp∞) ·Qnr
p , consisting of the adjunction to Qp of all

roots of unity, is the maximal abelian extension of Qp.

1.4. Application: the theorem of Hasse-Arf. In Chapter I, Section 1.2,
we defined, for a Galois extension L/K, a filtration (Gal(L/K)v) of the Galois
group Gal(L/K). We now consider the case when such an extension is abelian.
More precisely, we prove that the gaps in the filtration only occur at integral points.

Let Lπ = KnrKπ be the maximal abelian extension of K constructed in the
previous paragraph, and let Gπ = Gal(Lπ/K) be its Galois group. Furthermore,
let r = rπ : K∗ → Gπ be the local reciprocity map constructed in the previous
paragraph.

Theorem 1.21. For any real number v ≥ −1, r−1((Gπ)v) = U iK , where i is the
smallest integer ≥ v.

Proof. We prove the theorem for the extensionsKn
π only, i.e. for Gal(Kn

π/K).
Indeed, by passing to the projective limit, the theorem will be true for Gal(Kπ/K),
and since Gπ = Gal(Knr/K)×Gal(Kπ/K), the general case will follow.

Let G = Gal(Kn
π/K), and let rn : K∗ → G be given by u 7→ [u−1]f (with f

an element of Fπ). Fix an integer i ≤ n. Let u ∈ U iK\U
i+1
K , and let s = rn(u). If

α ∈ Enf \E
n−1
f , that is, if [πn]f (α) = 0 and [πn−1]f (α) 6= 0, then s(α) = [u−1]f (α).

Let u′ ∈ UK such that u−1 = 1 + πiu′. Then s(α) = [1 + πiu′](α) = [1]f (α) +F

[πiu′](α) = Ff (α, β), where β = [πiu′]f (α), and where Ff is the formal group law
associated to f . Hence

s(α)− α = β +
∑

i,j>1

ai,jα
iβj , ai,j ∈ OK .

Let i(s) = vKn
π
(sα−α). By Proposition 1.12, α and β are uniformizers forKn

π , resp.

Kn−i
π , and Kn

π/K
n−i
π is totally ramified. Furthermore, vKn

π
(β) ≤ vKn

π
(ai,jα

iβj) for
all i, j. Hence

i(s) = vKn
π
(β) = [Kn

π : Kn−i
π ] = qi.

Thus, if u ∈ U iK\U
i−1
K , then i(rn(u)) = qi. Equivalently (cf. Chapter I, Section 1),

if qi−1 − 1 ≤ w ≤ qi − 1, then r−1
n (Gw) = U iK , Gw denoting the ramification

group in the lower number defined in Chapter I. Let ψ be the function defined in
Chapter I, Section 1.2. If i − 1 < v ≤ i, then qi−1 − 1 < ψ(v) ≤ qi − 1, and thus
r−1
n (Gv) = r−1

n (Gψ(v)) = U iK , which completes the proof in the case of Kn
π , and

thus also in the general case of Lπ. �

Remark. If we drop the assumption that the residue extension kL/kK is separable,
a weaker version can be obtained, namely that the image of U iK in Gnπ is dense; see
Serre [7], Chap. XV, §2, Th. 2.
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By Proposition 1.19, Lπ is the maximal abelian extension of K, and thus we
may pick any subextension of K contained in Lπ and obtain:

Corollary 1.22 (Hasse-Arf). Let L/K be a finite abelian Galois extension with
Galois group G. Then the gaps in the filtration (Gv) only occur for integral values
of v.

2. p-adic Hodge-Tate representations

We suppose now, and for the rest of this chapter, that K is a local field of
characteristic 0 with residue field k of order q > 0. Let G = Gal(Qp/K) be its
absolute Galois group, equipped with the Krull topology. Let V be a finite dimen-
sional vector space over Qp, and denote by Aut(V ) the group of Qp-automorphisms
of V . A p-adic representation of G is a continuous homomorphism

ρ : G→ Aut(V ).

Example 2.1. 1) Let µpn denote the group of pn’th roots of unity, and let Tp =
lim
←−

(µpn) denote the group of all p-power roots of unity. Let Vp = Tp ⊗Zp Qp; it is
a one-dimensional vector space over Qp. The group G acts on µpn , and hence also
on Tp and on Vp. This action defines a one-dimensional p-adic representation of G,

χ : G→ Z∗
p ⊂ Q∗

p = Aut(Vp),

the cyclotomic character of G (Chapter I, §3.2, ex. 3.12). Recall that this is the
map tracking the action of G on p-power roots of unity:

s(x) = xχ(s), s ∈ G, x ∈ µpn , some n > 0.

2) Let E be an elliptic curve over K (or more generally, an abelian variety). Simi-
larly to the case of formal groups, we let En denote the group of pn-torsion points
of E, and define the Tate module Tp(E) as the projective limit lim

←−
En. It is a free

Zp-module on which G acts. This action extends to Vp(E) = Tp(E) ⊗Zp Qp, and
the corresponding homomorphism ρ : G→ Aut(Vp) is a p-adic representation of G.

Let C = Q̂p denote the completion of the algebraic closure of Qp, and let X be
a finite dimensional vector space over C on which G acts continuously and semi-
linearly (i.e. s(cx) = s(c)s(x) whenever s ∈ G, c ∈ C, x ∈ X). For each integer i,
we define the quantities

Xi = {x ∈ X | s(x) = χ(s)ix for all s ∈ G};
X(i) = C⊗K Xi.

The action of G on X(i) is given by s(c⊗ x) = s(c)⊗ s(x). Let αi : X(i)→ X
be the C-linear map obtained by extending the natural inclusion Xi ↪→ X .

Proposition 2.2. The direct sum α = ⊕iαi :
⊕

iX(i)→ X is injective.

Proof. For each i, let {eij}j=0,...,ni be an F -basis of Xi. Suppose that α is
not injective. Then there exists at least one family (cij) of elements in C, not all
zero, such that

∑

i

ni∑

j=0

cijeij = 0.
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Among these families, choose one with fewest non-zero element, and denote the
corresponding sum S. Without loss of generality, we may assume that ci0j0 = 1 for
some pair (i0, j0). If s ∈ G, then we have

(χ(s)i0 − s)S =
∑

i

ni∑

j=0

(cijχ(s)i0 − s(cij)χ(s)i)eij = 0.

This sum has strictly less terms that S, since the i0’th term cancels out. By
our minimality assumption, this relation must then be trivial, that is, cijχ(s)i0 −
s(cij)χ(s)i = 0, or equivalently, cij = χ(s)i−i0s(cij). Hence, cij ∈ C(χi−i0)G,
C(χi−i0) denoting C with the “twisted action” defined in Chapter I, §3.3. But by
Theorems 3.18 and 3.19 of Chapter I, C(χi−i0)G = H0(G,C(χi−i0 )) is K when
i = i0, and is trivial when i 6= i0, and thus S is reduced to the non-trivial relation

ni0∑

j=1

ci0jei0j = 0,

contradicting the linear independence of the basis elements {ei0j} of Xi0 . �

Proposition 2.2 allows us to identify
⊕

iX(i) with a subspace of X . If this
subspace is the whole of X , that is, if α : ⊕iX(i)→ X is an isomorphism, then X
is said to be of Hodge-Tate type. Given a p-adic representation ρ : G → Aut(V ),
we may take

X = C⊗Qp V

and let G act on X by the formula s(c⊗ x) = s(c)⊗ ρ(s)(x), s ∈ G, c ∈ C, x ∈ X .
We then say that ρ is of Hodge-Tate type is X is of Hodge-Tate type.

3. Local algebraicity; Tate’s Theorem

We keep the notations of Section 2, and will now be interested in the case where
ρ : G→ Aut(V ) is a p-adic abelian representation.

3.1. Locally algebraic representations. Let Gab = Gal(Kab/K), and sup-
pose that ρ : Gab → Aut(V ) is an abelian p-adic representation with V simple. Let
IK be the inertia subgroup of G = Gal(Qp/K); it acts on V through ρ, so that V
may be viewed as an IK-module.

Lemma 3.1. Suppose that V is a simple IK -module and that ρ(IK) is abelian.
Then there exists a finite extension L of Qp, with the action of IK given by a
continuous character ϕ : IK → L∗, such that we have an isomorphism of IK -
modules

V ' L.

Proof. This is a simple application of Wedderburn’s Theorem. Indeed, let
R = Qp[ρ(IK)], and view V as an R-module. By Schur’s Lemma, since V is a
simple R-module, D = EndR(V ) is a division ring. Furthermore, V is a faithful
R-module, and hence by Wedderburn’s Theorem, R 'Mn(D), for some n ≥ 1. By
assumption, R is commutative, so n = 1, and consequently R ' D so V ' D as
IK-modules. Put L = D. Now L is a finite extension of Qp, and the action of IK
on L is given by ϕ : IK → EndR(L) ' L∗, which completes the proof. �
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Let r : K∗ → Gab be the local reciprocity map defined in Section 1.3. As
described in the proof of Proposition 1.19, r maps the units UK of K isomorphically
into the inertia subgroup IabK of Gab. Composing this map with the character
ϕ : IabK → L∗ of Lemma 3.1 gives rise to a homomorphism

ϕ̃ : UK
r|UK−−−→ IabK

ϕ
−−−→ L∗.

Suppose that the extension L is large enough to contain all conjugates of K, and
denote by ΣK the set of embeddings K ↪→ L. The representation ρ is said to be
locally algebraic if there exist integers nσ, σ ∈ ΣK , such that

ϕ̃(x) =
∏

σ∈ΣK

σ(x)nσ

whenever x is sufficiently close to 1.

If V is semi-simple, say V =
⊕n

i=1 Vi, then ρ is said to be locally algebraic if
each representation Vi is locally algebraic.

Theorem 3.2 (Tate). Let ρ : G → Aut(V ) be an abelian p-adic representation,
such that its restriction to the inertial subgroup IK of G is semi-simple. Then the
following are equivalent:

(i) ρ is of Hodge-Tate type.
(ii) ρ is locally algebraic.

The remaining part of this section will be devoted to the proof of this theorem.

Remark. We make the requirement that the representation be semi-simple on the
inertia subgroup because Serre does. In fact, in his original definition via algebraic
tori, this property is intrinsic (Serre [6], Chap. III, §1, Prop. 1).

3.2. Extension of the ground field. Let K ′ be a finte extension of an

unramified extension of K, and suppose K ′ is contained in Qp. Let K̂ ′ be the

completion of K ′ in C. The group Gal(Qp/K
′) acts continuously and semi-linearly

on C. Define

X ′
i = {x ∈ X | s(x) = χ(s)ix for all s ∈ Gal(Qp/K

′)};
X(i)′ = C⊗ bK′ X ′

i.

Theorem 3.3. For all i, the map

K̂ ′ ⊗K Xi → X ′
i,

is an isomorphism of K̂ ′-modules

Proof. It suffices to prove the theorem for i = 0. Indeed, we recover the
general case by letting G act on X by (s, x) 7→ χ(s)−1sx. Now X0, resp. X ′

0, is the
set of elements of X invariant under the action of Gal(Qp/K), resp. Gal(Qp/K

′).

Clearly the K̂ ′⊗KX0 → X ′
0 is injective since, by Proposition 2.2, the map C⊗KX0

is injective. It remains to prove surjectivity. But since K ′ is a finite extension of
an unramified extension of K, it suffices to prove it for K ′/K finte, respectively
unramified.

So suppose that K ′/K is finite Galois, and let G′ be its Galois group. The
group Gal(Qp/K

′) acts trivially on X ′
0, and hence Gal(Qp/K) acts on X ′

0 through
the finite quotient G′ which acts semi-linearly on X ′

0. Let e1, . . . , en be a basis for
X ′

0, viewed as a K ′-vector space, and let f : G′ → GLn(K ′) be the continuous
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1-cocycle which to each s ∈ G′ associates the matrix f(s) ∈ GLn(K
′) of s in this

basis. Explicitely,

s(ej) =

n∑

i=1

aij(s)ei, aij ∈ K
′,

and we set f(s) = (aij(s)). Notice that if we change basis, say by a base-change

matrix M , the corresponding matrix of s is f̃(s) = M−1f(s)s(M), so that f and

f̃ are cohomologous in H1(G′,GLn(K
′)). Now by the non-commutative version of

Hilbert’s Theorem 90 (Chapter I, Th. 2.3), f is cohomologically trivial, i.e. there
exists g = (gij) ∈ GLn(K

′) such that g = f(s)s(g) for all s ∈ G′. Now the elements
e′j =

∑n
i=1 bijej , j = 1, . . . , n, form a new basis for X ′

0 and are clearly invariant

under G′. Hence they belong to X0, and consequently the map K̂ ′⊗K X0 → X ′
0 is

surjective, completing the proof in the finite Galois case.

Suppose now that K ′/K is unramified Galois, and again let G′ be its Galois

group. Let A be the ring of integers of K̂ ′, and let Λ ben an A-lattice of X ′
0. The

groupG′ acts continuously onX ′
0, and hence the stabilizer in G′ of Λ is open (for the

Krull topology) and therefore of finite index. We may therefore form a finite sum
Λ0 =

∑
s s(Λ) running over the elements of the stabilizer of Λ. This sum is then

invariant under the action of G′. We now use the same argument as in the finite
case. Namely, by picking a basis e1, . . . , em of Λ0, we obtain a continuous 1-cocycle
f : G → GLm(A) obtained by assigning to each s ∈ G the matrix f(s) ∈ GLm(A)
of σ in this basis. Now if we can prove that H1(G,GLm(A)) is trivial, we may
complete the proof in the same way as in the finite case.

Claim. H1(G,GLm(A)) = {1}.

Proof. The idea is to pass to the quotient in order to reduce to a finite case,
where Hilbert’s Theorem 90 can be applied. So let π be a uniformizer for A, and
define a filtation {Rn} on the ring R = GLm(A) by setting Rn = {x ∈ R | a ≡
1 (mod πn)}. Notice that R/R1 ' GLm(k′), where k′ = A/(π) is the residue
field of A, and that for n ≥ 1, Rn/Rn+1 ' (Mn(k

′),+) (the determinant can now
vanish). Now G acts on A/A1 and An/An+1 through a finite quotient, and hence by
Hilbert’s Theorem 90 (Chapter I, Th. 2.3),H1(G,A/A1) = H1(G,An/An+1) = {1}.
By successive approximations, the result follows. �

This completes the proof in the finite Galois, resp. unramified Galois cases.
The general case is obtained by the up-down argument. �

NowX(i)′ = C⊗ bK′
X ′
i ' C⊗ bK′

K̂ ′⊗KXi = C⊗KXi = X(i), and consequently:

Corollary 3.4. The Galois modules X(i) and X ′(i) are isomorphic. In particular,
extending K to K ′ does not alter the Hodge-Tate property of X.

3.3. Admissible characters. We keep the notations of the previous sections.
A character ϕ : G→ K∗ is said to be admissible if there exists a non-zero element
x ∈ C such that

ϕ(s) = s(x)/x, for all s ∈ G.

If this is the case, we write ϕ ∼ 1. We obtain an equivalence relation by writing
ϕ ∼ ϕ′ if ϕ/ϕ′ is admissible. Let C(ϕ) denote C together with the “twisted” action
of G given by

(s, x) 7→ ϕ(s)s(x), s ∈ G, x ∈ C.
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We denote this twisted action by sϕ. It is easy to see that

ϕ ∼ ϕ′ ⇐⇒ C(ϕ) ' C(ϕ′),

the isomorphism being understood as an isomorphism of G-modules. Indeed, if
λ : C(ϕ)→ C(ϕ′) is such an isomorphism, then ϕ(s)λ(1) = λ(ϕ(s) ·1) = λ(sϕ(1)) =
sϕ′λ(1) = ϕ′(s)s(λ(1)) so that ϕ/ϕ′(s) = s(λ(1))/λ(1). Conversely, if ϕ/ϕ′(s) =
s(x)/x for all x ∈ G, then the map λ : C(ϕ) → C(ϕ′) defined by λ(y) = yx is
readily seen to be an isomorphism if G-modules.

The following proposition shows that admissibility is a local property. It is a
direct consequence of Theorem 3.3.

Proposition 3.5. Suppose there exists an element x ∈ C∗ such that ϕ(s) = s(x)/x
for all s in some open subgroup N ⊂ IK . Then ϕ is admissible.

Proof. Let K ′/K be the subextension of Qp/K corresponding to N ⊂ IK =
Gal(Knr/K); it is a finite extension of the maximal unramified extension of K. Let
X = C(ϕ). As previously, let X0, resp. X ′

0, be the set of elements of X fixed by
G, resp. N . We have X ′

0 6= 0 by hypothesis, so by Theorem 3.3, X0 6= 0; hence ϕ
is admissible. �

We now define a second equivalence relation on characters ϕ,ϕ′ : G→ K∗ by

ϕ ≡ ϕ′ ⇐⇒ ϕ|N = ϕ′|N for some open subset N of IK .

Then, by picking x = 1 in Proposition 3.5, we obtain:

Corollary 3.6. If ϕ ≡ 1, then ϕ ∼ 1.

3.4. The logarithm map. Let v be the valuation on C, and let m, resp. U ,
denote the corresponding maximal ideal and unit group. The group of Teichmüller

representatives can be identified with the units k
∗

of the residue field of C (cf.
Serre [7], Chap. II, §4, Prop. 8), and we have the decomposition:

U = U1 × k
∗
.

The logarithm map log : U → C is defined by

log(x) =

{
0 if x ∈ µq−1∑∞
n=1(−1)n−1 (x−1)n

n if x ∈ U1

Lemma 3.7. Let F be a finite extension of Qp. Let UF , resp. mF , denote the
group of units of F , resp. the maximal ideal in the ring of integers of F . For n
sufficiently large, we have an isomorphism

log : UnF
∼
−→ mn

F

with inverse exp.

Proof. Let vp, resp. vF , be the normalized valuation on Qp, resp. F , and let
eF be the ramification index of F/Qp. Every integer n > 1 has the form n = pau,
where (p, u) = 1 and a > 0. Then

vp(n)

n− 1
=

a

pau− 1
≤

a

pa − 1
≤

1

p− 1
.
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Furthermore, if x ∈ UF and vF (x− 1) > eF /(p− 1), then vp(x− 1) > 1/(p− 1) and
hence

vp

(
(x − 1)n

x

)
− vp(x− 1) > (n− 1)

(
1

p− 1
−
vp(n)

n− 1

)
≥ 0.

Hence vF (log(x)) = vF (x − 1), and for n > e/(p− 1), log(UnF ) ⊂ mn
F . In the same

manner, one shows that vp((x − 1)n/n!) ≥ 0, so that vF (exp(x − 1) − 1) = vF (x),
and hence that for n > eF /(p − 1), exp(mn

F ) ⊂ UnF . Furthermore, the standard
identities of formal power series show immediately that log(exp(x−1)) = x−1 and
that exp(log(x)) = x. This completes the proof. �

The map log : U → C is surjective, with kernel the group µ∞ of all roots of
unity, so we have an exact sequence

0→ µ∞ → U
log
−−→ C→ 0,

which in turn gives rise to the exact sequence in cohomology,

H1(G,µ∞)
i
−→ H1(G,U)

λ
−→ H1(G,C).

On the other hand, since the valuation ring of C is Q, and since U by definition is
the kernel of the corresponding valuation map, we get an exact sequence

(∗) 1→ U → C∗ → Q→ 1.

By Theorem 3.18 of Chapter I, we have H0(G,C∗) = K∗. Furthermore, Q ⊂ Qp,
and hence G acts trivially on Q so that H0(G,Q) = Q. In particular, all cocycles
f : G → Q are zero, and hence H1(G,Q) are trivial. Therefore, the long exact
sequence in cohomology corresponding to (∗) reduces to K∗ → Q → H1(G,U) →
H1(G,C∗)→ 0, or equivalently, since vK(K∗) = Z,

0→ Q/Z
δ
−→ H1(G,U)

j
−→ H1(G,C∗)→ 0.

Proposition 3.8. There is a unique injective map L : H1(G,C∗) → H1(G,C)
such that L ◦ j = λ.

Proof. Existence and uniqueness follows from the fact that the composition

Q/Z
δ
−→ H1(G,U)

λ
−→ H1(G,C) is be zero (since H1(G,C) is a vector space over C,

so that the only homomorphism of Q/Z into H1(G,C) must be 0). So it remains to
prove injecvity of L. By combining the above sequences in cohomology, we obtain
a commutative diagram

−−−
−−→
λ

−→
i

−−
−
−
−
−→

L
−−−−−→j

H1(G,C)

H1(G,µ∞) H1(G,U)

H1(G,C∗).

We have 0 = λ ◦ i = L ◦ j ◦ i, and hence L is injective if and only if the composition

j ◦ i is 0. However, µ∞ ⊂ Q
∗

p, so j ◦ i factors through H1(G,Q
∗

p), which is zero by
Hilbert’s Theorem 90 (Chapter I, Cor. 2.4), and hence j ◦ i = 0. �

Let us apply this result to characters. A continuous character ϕ : G → K∗ ⊂
C∗ defines a 1-cocycle on G with values in C∗. Let [ϕ] ∈ H1(G,C∗) denote its
cohomology class. Suppose φ is a cohomologically trivial cocycle in H1(G,C∗),
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say the constant map equal to 1 on G. Then if ϕ is admissible, we have ϕ(s) =
s(x)x−1 = s(x)φ(x)x−1 , i.e. ϕ and φ are cohomologous:

ϕ ∼ 1 ⇐⇒ [ϕ] = 0.

Using the fact that L is injective, we can say more:

Corollary 3.9. The character ϕ is admissible if and only if L[ϕ] = [logϕ] is trivial
in H1(G,C).

And since L[ϕn] = nL[ϕ], we get:

Corollary 3.10. If ϕn ∼ 1 for some integer n > 0, then ϕ ∼ 1.

3.5. Locally trivial characters. Let F be a finite extension of Qp, such that

K contains all conjugates of F . Let GF = Gal(Qp/F ) be its absolute Galois group,
and let ΣF be the set of embeddings of F into K. Let ϕ : G → F ∗ be continuous
character. Composition with an embedding σ ∈ ΣK gives rise to a new character
σ ◦ ϕ of G into K∗.

Proposition 3.11. The following statements are equivalent:

(i) ϕ ≡ 1;
(ii) σ ◦ ϕ ∼ 1 for all σ ∈ ΣK.

Proof. Let N be an open subgroup of the inertia group IK of G. If ϕ |N= 1,
then σ ◦ ϕ |N= 1 for all σ ∈ ΣK , and the implication (i) =⇒ (ii) follows from
Corollary 3.6. For the converse, notice first that ϕ is a continuous map on a compact
group, and hence takes its values in UK . Hence, the composition log ◦ϕ : G→ F is
well-defined. Moreover IK is closed in G since it is the preimage of 0 ∈ Gal(k/k)
via the natural map G → Gal(k/k) (k and k denoting the residue fields of Qp,
resp. K). Since G is compact, so is IK . Hence, log ◦ϕ(IK) is a compact subgroup
of the additive group of F (the multiplicative structure of UF being brought to
the additive one in F ), and so it is isomorphic to Znp for some n ≥ 0. Let W
be the n-dimensional Qp-vector subspace of L generated by log ◦ϕ(IK); since F
is quasi-compact, log ◦ϕ(IK) is a lattice in W . Furthermore, since log is a local
isomorphism by Lemma 3.7, condition (i) is equivalent to saying that log ◦ϕ is 0 on
IK . We suppose that this is not the case, i.e. that n ≥ 1. Let

f : F → K

be a Qp-linear map with dim f(W ) = 1. For instance, if we pick a basis of W and
extend it to a basis of F , we obtain such a map by sending the first basis element
to a non-zero element of K, and all remaining basis elements to 0. By linear
independence of characters, (Bourbaki [1], Chapt. V, §10, Th. 2), ΣF generates
HomQp(F,K), and hence f can be written as the sum

f =
∑

σ∈ΣK

kσσ, kσ ∈ K,

and hence f ◦log ◦ϕ = (Σ kσσ)◦log ◦ϕ = Σ kσ log(σ◦ϕ). By assumption, [σ◦ϕ] = 0
and so by Corollary 3.9, [log(σ ◦ ϕ)] = 0. Consequently, [f ◦ log ◦ϕ] = 0. By
Lemma 3.7, we have, for n large enough and for x ∈ mn

K ,

exp(log(1 + x)) = 1 + x and log(exp(x)) = x.
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By replacing f by pNf , with N large enough, we may assume that pNf ◦ log(UE) ⊂
mn
K , and hence obtain a well-defined map g : UE → UK ,

g(z) = exp(f(log(z)),

which satisfies log ◦g = f ◦ log. Set ψ = g ◦ ϕ. Then f ◦ log ◦ϕ = log(ψ), and
by Proposition 3.9, ψ is admissible. But now ψ(IK) is the product of Zp with a
finite group, hence infinite, and by Proposition 3.19, C(ψ)G = 0. However, ψ is
admissible, so C(ψ) ' C. Then by Theorem 3.18, C(ψ)G = CG = K 6= 0, hence a
contradiction, as desired. �

3.6. Hodge-Tate decompositions. Let V be a one-dimensional vector space
over F , and let ρ : G → UF be a continuous homomorphism of G = Gal(Qp/K)
into the unit group of F . We give V the structure of a G-module by means of the
action (s, v) 7→ ρ(s)v, s ∈ G, v ∈ V . As previously, put

X = C⊗Qp V.

Let d = [F : Qp] denote the dimension of X over C, and endow C with the semi-
linear action of G. Define a representation F → EndC(X) by z 7→ az, where az is
the C-endomorphism of X given by

az

(∑
ci ⊗ vi

)
=

∑
ci ⊗ zvi, ci ∈ C, vi ∈ V.

If s ∈ GL and x =
∑
ci ⊗ vi ∈ X , then az(s(x)) =

∑
s(ci)⊗ ρ(s)zvi = s(az(x)), so

the action of az commutes with that of G. For σ ∈ ΣF , let

Xσ = {x ∈ X | az(x) = σ(z)x, for all z ∈ F}.

This is a 1-dimensional C-vector space, stable under the action of G; indeed, for all
s ∈ G, we have az(s(x)) = s(az(x)) = s(σ(z)x) = σ(z)s(x).

Lemma 3.12. There is a natural isomorphism of G-modules

X
∼
−→

⊕

σ∈ΣK

C(σ ◦ ρ).

This isomorphism maps Xσ onto C(σ ◦ ρ).

Proof. Since V is a one-dimensional vector space over F , it follows that X
is isomorphic to C⊗Qp F , which in turn is isomorphic to a product C× . . .× C of
d copies of C, the projections C ⊗Qp F → C being given by the d elements of ΣF .
Since Xσ is a one-dimensional vector space over C, this extablishes the direct sum
decomposition X =

⊕
σ∈ΣF

Xσ.

Moreover, we have an isomorphism C ⊗Qp F
∼
−→

∏
σ∈ΣF

C(σ ◦ ρ) which sends

c⊗ v to (c · σ(v))σ∈ΣF . This map commutes with the action of G since s(c⊗ v) =
s(c)⊗ρ(s)v 7→ (s(c) · (σ ◦ρ)(s)σ(v))σ = (s̃(c ·σ(x))σ . This completes the proof. �

3.7. The character associated to a Lubin-Tate formal group. Let π be
a uniformizer of F , and for an element f ∈ Fπ, let Ff ∈ OF [[X,Y ]], resp. Ef , be
the corresponding formal group law, resp. Tate module, constructed in Section 1.3.
Set Fπ = F (Ef ). Denote by F ab, resp. Fnr, the maximal abelian, resp. maximal
unramified, extension of F . The residue field of Fnr is an algebraic closure of the

residue field of F and hence Gal(Fnr/F ) is isomorphic to the completion Ẑ of Z
(that is, the inverse limit of all finite cyclic groups), via the map n 7→ Fn (here n ∈ Ẑ
and F is the Frobenius element in Gal(Fur/F )). Moreover, recall (Section 1.3) that
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Gal(F ab/Fnr) ' UK . Combining with Corollary 1.13 and the remark following it,
we get

Gal(F ab/F ) = Gal(Fπ/F )×Gal(Fur/F ) ' UK × Ẑ.

Let prπ : Gal(F ab/F ) → UF be the projection onto the first factor. Also, let
ν : G → Gal(F ab/F ) be the homomorphism on Galois groups induced by the
inclusion F ↪→ K. Finally, let i : UF → UF be given by i(u) = u−1. We define the
character χF : G→ UF as the composition

(†) G
ν
−→ Gal(F ab/F )

prπ−−→ UF
i
−→ UF .

Since ν maps the inertia group IF of G into that of Gal(F ab/F ), which in turn is
isomorphic to UF via the local reciprocity map, we get that the restriction of χF
to IF is given by x 7→ ν(x−1).

Lemma 3.13. We have the following:

(a) χF ∼ χ;
(b) If σ ∈ ΣF is not the natural inclusion, then σ ◦ χF ∼ 1.

Proof. We only sketch the proof (see also Serre [6], Chap. III, §A5). Let
V = Ef ⊗OF Qp. Recall that G acts on Ef , and hence of V , through the character
χF : G→ UK (Section 1.3). LetX = C⊗QpV . Now before we proceed, we introduce
a few notions. The tangent space t of Ff at the origin is, by definition, the set of
OF -linear maps τ : OF [[X ]] → K satisfying τ(fg) = f(0)τ(g) + g(0)τ(f) for all
f, g ∈ OF [[X ]], or, in the standard way, the set of OF -linear maps I/I2 → F , where
I = (X) denotes the augmentation ideal in OF [[X ]]. Thus, t is a one-dimensional
vector space over K. Let t′ be (d − 1)-dimensional tangent space of the dual of
Ff , where again d = [F : Qp]. Let Vp be the one-dimensional Qp-vector space of
Example 2.1. By a theorem of Tate ([9], §4, Cor. 2 to Th. 3), there is a canonical
isomorphism of G-modules

X = X(0)⊕X(1),

where, X(0) = C⊗K HomF (t′,K) and X(1) = (C ⊗Qp Vp)⊗K t. By construction,
C ⊗ QpVp ' C(χ), so that X(1) ' C(χ) ⊗K t. Since t is a vector space over K,
F ⊂ K acts on t via the inclusion σ1 : F ↪→ K, and so Xσ1

cannot be contained in
X(0), hence must be equal to X(1). Thus, by Lemma 3.12, C(σ1 ◦ ρ) ' C(χ)⊗K t,
and this can be shown to imply C(χF ) ' C(χ), that is, χF ∼ χ. Using the same
argument, we have, for σ 6= σ1, that Xσ must be contained in X(0), implying
C(σ ◦ χF ) ' C(1) and thus σ ◦ χF ∼ 1. �

We may now prove the following crucial theorem. For σ ∈ ΣK , let χσF be the
character attached to the subfield σF of K.

Theorem 3.14. The following statements are equivalent:

(i) V is of Hodge-Tate type;
(ii) For each σ ∈ ΣF , there exists an integer nσ such that

ρ ≡
∏

σ∈ΣF

σ−1 ◦ χnσ

σF .

Proof. Statement (i) is equivalent to the statement σ◦ρ ∼ χnσ for all σ ∈ ΣF .
We will prove that the latter is equivalent to (ii). To this purpose, define a character
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θ : GF → K∗ by

θ =
∏

σ∈ΣF

σ−1 ◦ χnσ

σF .

If F is replaced by σF in Lemma 3.13, we have that, if τ ∈ ΣF is different from
σ (so that τ ◦ σ−1 is not the identity on σF ), then τ ◦ σ−1 ◦ χσF is admissible. If
τ = σ, then τ ◦σ−1◦χσF ∼ χ. These observations can be applied to the composition
τ ◦ θ =

∏
σ∈ΣF

τ ◦ σ−1 ◦χnσ

σF , to get that τ ◦ θ ∼ χnτ , and hence that statement (i)
is equivalent to τ ◦ θ ∼ τ ◦ ρ for all τ ∈ ΣF . By Proposition 3.11, this is equivalent
to ρ ≡ θ. �

Corollary 3.15. The following statements are equivalent:

(i) V is of Hodge-Tate type;
(ii) V is locally algebraic.

Proof. Let NL/K : L∗ → K∗ be the norm map for a finite abelian exten-
sion L/K. It is well-known (Cassels-Fröhlich [2], Chap. VI, §2.2, Th. 2) that
K∗/NL/KL

∗ ' Gal(L/K). Taking the projective limit over all such extensions

(with respect to the norm maps), we get K̂∗ ' Gal(Kab/K). Similarly, F̂ ∗ '
Gal(F ab/F ). Hence, the composition (†) becomes

χF : K̂∗ NK/F
−−−−→ F̂ ∗ prπ−−→ UF

i
−→ UF .

The norm maps the inertia subgroup IabK of Gal(Kab/K), to that of Gal(F ab/F ),
which is isomorphic to UF via the local reciprocity map. Hence, χF restricted to IabK
is x 7→ NK/F (x−1). Consider now the composition σ−1 ◦NK/σF : IK → UσF → UF
restricted to the inertia subgroup if Gal(Kab/K). Since admissibility can be seen
on an open subgroup of the inertia group, we then get by Theorem 3.14 that V is
of Hodge-Tate type if and only if

ρ ≡
∏

σ∈ΣF

σ−1 ◦N−nσ

K/σF =
∏

σ∈ΣF

(σ−1(NK/σF ))−nσ ,

and this coincide with the definition of local algebraicity. �

3.8. Proof of Tate’s theorem. We now go back to the case where V is a
finite dimensional vector space over Qp and prove Tate’s theorem.

Theorem 3.16 (Tate). Let ρ : G → Aut(V ) be an abelian p-adic representation,
such that its restriction to the inertial subgroup IK of G is semi-simple. Then the
following are equivalent:

(i) ρ is of Hodge-Tate type.
(ii) ρ is locally algebraic.

Proof. Replacing ρ by ρ′ = ρ ◦ prπ does not affect the Hodge-Tate property
(Corollary 3.4), nor the local algebraicity. Recall that prπ maps G into the inertia
subgroup, and since ρ by assumption is semi-simple on the inertia subgroup, we
may assume that ρ′ is semisimple. Furthermore, by the definitions of Hodge-Tate
and locally algebraic representations (in terms of their direct sum decompositions),
we may furthermore assume that ρ′ is simple.

Now let F ⊂ K be the commutant of the algebra End(V ); since ρ′ is simple
and abelian, it follows by Shur’s Lemma that V is a one-dimensional vector space
over F . Let L be a finite extension of K, large enough to contain all conjugates
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of F . By Corollary 3.4, passing to this extension again does not affect the Hodge-
Tate property, nor does it affect local algebraicity. Hence, it suffices to prove the
equivalence for the representation ρL : Gal(Lab/L)→ Aut(V ). But this is precisely
the setting of the previous section, and by Corollary 3.15, the result follows. �

3.9. Application: Imai’s Theorem. It is the following:

Theorem 3.17 (Imai). Let K be a local field, and let L be the smallest field con-
taining K and µp∞ . Let A be an abelian variety with good reduction. Then the
torsion subgroup of A(L) is finite.

The proof appears in Imai [5]. Roughly, the idea in such a proof is to consider
the Tate modules Tp(A(L)) and Vp(A(L)) and the associated p-adic representation
ρ : Gal(L/K)→ AutVp(A(L)), as in Example 2.1 above, and obtain a Hodge-Tate
decomposition of X = C⊗Qp Vp(A(L)). Hopefully, one is able to “rule out” some of
the summands, for instance by considering the Lie algebra of ρ(Gal(L/K)) (which
in this case has dimension less than that of X , and hence the Lie algebras of some
of the summands are 0, and the Lie algebras of the remaining summands have a
nice form). Thereby, one obtains a more and more precise structure on X , and
hence on the Tate modules.
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